A. H. Javid; M. Abbaspour; S. A. Mirbagheri; H. JanfeshanAraghi
Volume 2, Issue 2 , June 2012, , Pages 141-148
Abstract
The study of wave and its propagation on the water surface is among significant phenomena in designing quay, marine and water structures. Therefore, in order to design structures which are exposed to direct wave forces, it is necessary to study and simulate water surface height and the wave ...
Read More
The study of wave and its propagation on the water surface is among significant phenomena in designing quay, marine and water structures. Therefore, in order to design structures which are exposed to direct wave forces, it is necessary to study and simulate water surface height and the wave forces on the structures body in different boundary conditions. In this study, the propagation of static sinusoidal wave in deep water environment with complex boundary conditions are simulated by using Smoothed Particle Hydrodynamics (SPH) technique. The governing equations are programmed using VISUAL FORTRAN6.5 and the solution results are visualized using TECPLOT. After determining the suitable number of particles for simulation, the duration of sinusoidal wave oscillation are measured by simulation and are compared with analytical solution. After ensuring the accuracy and veracity of proposed SPH method in simulation of static sinusoidal wave motion on the deep water surface, the simulation are carried out in more complex boundary conditions which there are no analytical solutions.