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ABSTRACT: Given the worldwide industry progress in the construction of massive concrete structures, 

it would be a good idea to use concrete gravity base structures (GBS).In this regard, better understanding 

of thesestructuresregardingtheiradvantages and disadvantages in offshore areas seems necessary.The 

present study employed MacCammy-Fuchs method, which is based on the size of the structure to the 

wavelength and the range of Keulegan-Carpenter number; in this method, diffraction theory and Bessel 

functions are used to compute the velocity potential function and consequently compute the 

hydrodynamic pressure on the components of the structure.The results of this study with regard to the 

harmonic dynamic response of the rocking motion of the platform under wave loads revealed that (i) the 

computed torque value converges to a definite value by decreasing the size of elements,and (ii) Bessel 

functions can be represented by amplitude and phase functions which have identical performance.The 

time-history response of the gravitybase structure, and the amplitudechanges of rocking motion relative to 

frequency and the height of the waves are other results obtained in this study. Finally, the stability index 

of the GBS shows that the platform is within safe limits. 
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INTRODUCTION

Gravity1
 platform or GBSusesits weight to keep 

its balance in response to the environmental 

actions.This type of platform is installed up to a 

water depth of 300 meters (Holandet al., 2003). 

In Seatank and Condeep types of GBS, deck 

cargo and equipment are transferred 

tocaissonsby one or more concrete bases. These 

types of platformare installed at a water depth of 

100 meters; typically they have a caissonwith a 

width of about 100 m and a height of 20 to 40 

meters. Hollow concrete columns may normally 

reach up to 20 meters in diameter.Changes 

ofcolumn diameter may be continued in 

coneform up to the surface of water to reduce 
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wave loads. Caisson storages save oil and 

provide the required weightfor thestability ofthe 

platform. Caisson can be equipped with concrete 

or steel dowels protruding from its floor. During 

installation, this penetration to seabed before any 

other part of the structure, help keep the 

structure in position. It is also possible 

thatskirtsthat penetrate the seabedcarry the loads 

to the soil layers that are not dug any more. 

Skirts, also, act as shear keys that help prevent 

land fragmentation around the edges of the 

platform. Smaller portions are also used during 

the installation to control the suction and 

pressure of the platform.In areas where the 

seabed conditionis strong and stiff, and piling is 

difficult, a form of alternative structure is used 
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instead of a jacket platform. This structure, 

instead of dowels, relies on its weight to remain 

stable in response to large lateral loads caused 

by waves, wind, and current. Such structures 

have great foundation elements that are called 

caisson and when ballasted will have a 

significant contribution to the weight needed to 

make the structure stable. These elements are 

sorted in a way thatthe weight of the platform is 

spread on the sufficient area of seabed; therefore, 

it prevents thesoil fragmentation under the 

platform. These structures are generally called 

gravity base structures (Boon, 1977; Gerwick, 

2007; Mo, 1976; Reppe and Helsc, 1994). 

Horizontal environmental loads can cover 25% 

of the buoyancy mass ofthe structure. 

Sincecolumns of theGBS, unlike the bases of 

jacket and jack-up steel structures, have large 

diameters, from between the two elements of the 

Morrison’s theory(i.e., drag and inertia) fluid 

flow regime around these columns is the 

dominant inertial force. On the other hand, the 

diameter of a large caisson, covering typically 

one-third to one-half of the final wavelength, 

and hydrodynamics of the caisson needsspecial 

analysis using diffraction theory (Dean, 2010). 
Wilson (2003)in the second and fifth chapter on 

the swing movements of one degree of 

freedom,mentioned the rocking motion of GBS 

as one of the important factors and explainedits 

features. LotfollahiYaghin and Ahmadi (2011) 

also introduce this issue andpresent appropriate 

mathematical relations to solve the problem of 

wave diffractionaround large structures. 

Thesemathematical relations and 

theirimplications are, also, mentioned in details 

in McCormick (2010). Abramowitz and 

Stegun(1965) proposed solutions to solve the 

potential function that is of Bessel functions. In 

the following part, some useful resources on the 

GBS are introduced. 

Designing an experimental study, Mogridge and 

Jamieson (1976)examined the uptake and safe 

distance of the deck from sea level forGBS. 

Stansberg et al. (2004),reported building a GBS 

model with a 1 to 54 scale, exertion of a wave, 

and performing tests regarding interaction of the 

structure and fluid.Studying and discussionson 

the load of the hit exerted to the deck and the 

effect of nonlinear wave acceleration are some 

of the outcomes of their study. Glagovsky 

(2012) studied the movements and seismic 

stability of GBS. MirzaeeSefat and Ketabdari 

(2003)examined the possibility of dynamic 

analysis of the interaction of the waves with 

massive structures such as Spar and semi-

submersible platforms and floating 

breakwatersusing diffraction theory and 

software. ZareBenadkuki (2014) studied 

thebehavior of the foundation of a single base 

concrete platform under wave load, current and 

wind in Persian Gulf,to model the wave 

forces,current,and wind, and placed the 

combined load of these forces on the concrete 

base, and eventually obtained the forces and the 

column leg anchorby software analysis. 

The present study investigated the stability of the 

GBS in rocking motion with respect to soil 

mechanics and hydrodynamic properties of the 

structure by solving the equations of the 

harmonic movement.The study progresses by 

firstly introducing the dimensions and the 

properties of the GBS and the parameters of the 

problem and then determining motion equation, 

weigh characteristics,damping, and stiffness of 

the structure; next, the force and torque of the 

wave exerted on GBS are computed using the 

diffraction theory and MacCammy-Fuchs 

method. Finally, based on the harmonic response 

to regular waves,the rocking motion of one 

degree of freedom is resolved. 

 

statement of the problem 

It is assumed that the investigated structure is 

rigid, and in the xzvertical plane, theone degree 

of freedom movement of θ rotationon the plane, 

smaller than 10 degrees,is studied. This 

rotational movementon the plane is called 

rocking motion. The platform on the seabed is 

relying on a soil foundation. The movement of 

the platform is limited to the rotation of θ around 

the axis passing through the point O perpendicular 

to the image plane.  
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Fig. 1: Schematic view of the studied movement (Wilson, 2003) 

G: Center of gravity 

B: Center of buoyancy 

F (t):The horizontal force of waves, current, and wind 

𝑓(𝜃):̇The anchor offoundation reaction resulted fromdamping 

q (θ):Support anchor 

𝑚0: Real mass of the structure 

𝑚𝑏: Buoyancy mass 

ℎ𝐺: Bed height up to the center of mass 

ℎ𝑏: Bed height up to the center of buoyancy 

ℎ0: Bed height up to the place where the horizontal force of the waves, current, and wind exerts 

𝑚𝑝𝑐: The torque caused by the pressure difference on the upper end of the caisson (pressure is on the caisson) 

which is caused by the wave passing over it 

𝐽0: Inertiamoment of the virtual mass around the axis passing point O perpendicular to the plane ofmovement 

 

Equation of rocking motion 

According to the free-body diagram of Fig. 1, 

the equation can be expressed as follows: 

 𝐽0ӫ+ 𝑓 (𝜃)̇+ 𝑞 (𝜃) –(𝑚0𝑔ℎ𝐺 −
 𝑚𝑏 𝑔ℎ𝑏) sin θ = − 𝐹(𝑡)ℎ0− 𝑚𝑝𝑐                 (1) 

 
It should be noted that the assumption of a rigid 

body is not always a realistic assumption. If the 

purpose isto determine the dynamic bending 

stress at the bases of GBS, the assumption of the 

rigid body is not correct. However, if the 

purpose isto estimate the overall dynamic 

stability of the GBS system and the 

earthenfoundation,the assumption is correct. 

Regarding the purposes of analysis, the 

following assumptions are considered: 

¶ The deck and its equipment are considered as 

a thin disc with a diameter of 55 mm. 

¶ The uniform section of the base located 

above thestatic water level, is a thin-walled 

and empty tube. 

¶ The immersed uniform section of the base is 

a thin-walled tube filled with water. 

¶ The immersed inclined section of the base is 

a thin-walled cone filled with water. 

¶ The caissonis approximately considered as a 

cylinder which consists of two parts. The first 

part is a set of vertical cylindrical tanks with 

a height of 50 meters; the volume of water 

displaced by this set is totally 70% of the 

volume of the water occupied by a cylinder 

with a height of 50 meters and a radius of 45 

meters. These tanks are filled with oil and the 

average density of them and their contents is 

considered to be 900 kg per cubic meter.The 

set of these tanks isassumed as a 

homogeneoussolid piece with the mentioned 

density. The second part consists of the 

foundation and ballast which are considered 

as a cylindrical and homogeneous solid piece 

with a height of 10 meters and density of 

2000 kg per cubic meter. Moreover, the 

density of the basic concrete is considered to 
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be 2500 kg per cubic meter (Wilson, 2003; 

LotfollahiYaghinand Ahmadi, 2011). 

 

Differential equation of motion for the above 

platform is rewritten as follows (Wilson, 2003): 

𝐽𝜃(𝑡)+𝑐𝜃(𝑡)+𝑘𝜃(𝑡)=𝑀0sin(𝜔𝑡) (2) 

The parties of the equation are divided by𝐽, then 

regarding   (
𝑐

𝐽
=2𝜁𝜔), the differential equation 

of motion is changed to: 

𝜃(𝑡)+2𝜁𝜔𝜃(𝑡)+𝜔2𝜃(𝑡)=
𝑀0

𝐽
sin(𝜔𝑡)       (3) 

 

The overall response of the differential equation 

of (3) is now as follows (Saadatpour,2007): 

𝜃(𝑡)=(𝐴cos𝜔𝐷𝑡+𝐵sin𝜔𝐷𝑡)𝑒𝑥𝑝(−𝜁𝜔𝑡)+
𝑀0

𝑘
[

1

(1−𝛽2)2+(2𝜁𝛽)2
][(1−𝛽2)sin𝜔𝑡−

2𝜁𝛽cos𝜔𝑡]                                                      (4) 

 

The first right hand side statement of the above 

equation represents the transient response which 

according to 𝑒𝑥𝑝(−𝜁𝜔𝑡)is damping. Integral 

constants of A and B can be evaluated for the 

initial conditions of  𝑣(0)and 𝑣(0); however, 

since the transient response is quickly damped, 

generally less attention is paid to it. Stable 

harmonic response in the second sentence of the 

equation (4) is important. This steady-state 

behavior of the stable mode,is simply interpreted 

by drawing two respective rotating vectors in a 

complex plane, as shown in Fig. 3. The 

components of these two vectors across the real 

axis are the same last two sentences of equation 

(4). 

If the two sine and cosine sentences of the stable 

response are written together as phase and 

amplitude, then: 

𝜃𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟(𝑡)=𝜃𝐴sin(𝜔𝑡−𝜑)                     (5) 

 

In this equation,𝜃𝐴 is the amplitude of the 

rocking motion that is computed by the 

following equation: 

𝜃𝐴=
𝑀0

𝑘
[(1−𝛽2)2+(2𝜁𝛽)2]−0.5                  (6) 

 

The phase angle,𝜑, the value of which equals the 

delay of the GBS response to wave load, is:     

𝜑=tan−1[
2𝜁𝛽

1−𝛽2
](                                           (7) 

 

The range of the phase angle is0<φ<180. 
Finally, the ratio of the harmonic response 

amplitude resulting in static deflection that could 

beraised from 𝑀0loading,is called dynamic 

amplification factor which is as follows: 

𝐷≡
𝜃𝐴

𝑀0𝑘⁄
=[(1−𝛽2)2+(2𝜁𝛽)2]−0.5(        (8) 

 

 
Fig. 2: Schematic view of a single base GBS with common dimensions in the metric system (Wilson, 2003) 
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Fig. 3: The stable harmonic response of the mass-spring-damper system  

 
Environmental Conditions 

Regarding the geographical location of the GBS, 

located in the North Sea, the environmental 

conditions and characteristics of the region are 

as follows: 

( ρ=1025
𝑘𝑔
𝑚3
⁄ ,𝑔=9.81𝑚

𝑠2⁄
 ,,𝐻0=

6𝑚ℎ=150𝑚𝑇=8𝑠,𝜆=100𝑚(                   (9) 

 

Accordingly, using the relation of water wave 

distribution, the wave number and frequency are 

obtained as follows. It is clear that for any 

otherwavelength,the corresponding values are 

also computable, which will be presented in the 

section related to the results of the charts for a 

range of wavelengths. 

𝐾 = 
2𝜋

𝜆
 = 0.062 (9)𝜔 = 

2𝜋

𝑇
 = 0.7853          (10) 

 

In Fig. 4, different hydrodynamic flow regimes 

can be seen around the structure, and it can be 

concluded that for 𝑘𝑎 <0.1, the inertial force is 

dominant and for 𝑘𝑎>0.5, the diffraction force 

is dominant. This multiplication, in which k and 

a are the wave number and base radius, 

respectively, is obtained from the following 

equation: 

𝐾𝑎=
𝜋𝐷

𝜆
                                                         (11) 

It is 0.62 for the given values, here.In Fig. 4,  
 

Keulegan-Carpenter number for deep water can 

be obtained from the following equation: 

𝐾𝐶=
𝜋𝐻0

𝐷
                                                        (12) 

 

For this problem, 𝐾𝐶=0.94. By connecting the 

two numbers of ka and KC in Fig. 4,it is 

revealed that the diffraction force is dominant 

(McCormick, 2010). 

 

MATERIALS AND METHODS 

In this section, firstly, the properties of the 

structure and then wave torque computations are 

presented. 

 

Properties of the structure 

On the left side of the GBS motion equation, 

equation (1), are the parameters of rotational 

inertia, rotational damping, soil stiffness, 

restoring torque of the structuregravity, and 

buoyancy restoring torque. The free vibration 

equation is as follows: 

𝐽0ӫ+ 𝑓 (𝜃)̇+ 𝑞 (𝜃) – (𝑚0𝑔ℎ𝐺 −
 𝑚𝑏 𝑔ℎ𝑏)sin θ=0                                         (13) 

 
Mass and moment of rotational inertia 

In order to compute the moment of rotational 

inertia, firstly we can divide GBS, including the 

base and caisson, into elements of 0.1 meter, 

then compute the moment of each element with 
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respect to the origin (i.e., the intersection of the 

vertical axis of the platform and the sea bed), 

and finally add all together.The mass of each 

element consists of the mass of the structure and 

its added mass.  For the mass of structure, the 

mass of the concrete shell with a density of 2500 

kg per cubic meter is calculated; and for the 

added mass, the volume of each element in the 

density of water, that is 1025 kg per cubic meter, 

is calculated. Thus, the total mass of the 

structure is: 

m0=4.21∗10
8  kg                                      (14) 

 
 

 
 

Fig. 4: Chakrabarti's Graph for determining the hydrodynamic flow regime around structures (McCormick, 

2010) 

 
Also, the buoyancy mass (mb) is: 

mb = the volume of underwater structure * 

density of water    

mb=384240.63m3∗1025
kg
m3
⁄ =

393846649.2kg=3.93∗108kg                  (15) 

 

To calculate the height of the gravity center, the 

present study used the following equation: 

hG∗m=∫rdm → hG=29.35  m  𝐽=1.28∗
1012N.M                                                        (16) 

 

Finally, the place of gravity centeris determined 

29.35 meters above the seabed, and the radius of 

gyration is 39 meters around the rotation axis of 

the structure in the rocking motion. 

Rotational damping  

In calculating the rotational damping,with regard 

to: 

𝑓 (𝜃)̇=𝑐𝜃(N.m)                                            (17) 

 

The damping dimension is [𝑐]=
𝑘𝑔.𝑚2

𝑠
 . On the 

other hand, in the above equation, the motion 

equation of mass-spring-damper system has two 

conjugate roots for the value of critical damping, 

that is to say: cc=2√Ik. Thus, the rotational 

damping equation is as follows:  

𝑓 (𝜃)̇=𝑐𝜃=2𝜁√𝐼𝑘𝜃                                   (18) 

 

Soil stiffness 

The next parameter is soil stiffness consisting of  
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constant numbers for that region as follows 

(Wilson, 2003; Camerlenghi, 1995; Waltham, 

2000): 

𝑞 (𝜃)=𝑘𝑠𝜃(19)𝑘𝑠=𝑎0−𝜔𝑏0            (20) 

𝐺𝑠=10 𝑚𝑝𝑎for𝑏0=4.97∗10
11 

𝑎0=3.63∗10
12for𝐺𝑠=10 𝑚𝑝 

𝜔=0.78 
 
As a result, according to equation (13), 

flexibility and stiffness of the system are equal 

to: 

𝑘=(𝑘𝑠−𝑚0𝑔ℎ𝐺 − 𝑚𝑏 𝑔ℎ𝑏)         (21) 

 
Formulation of force and torque of diffraction 

wave 

This section presents MacCamy-Fuchs analysis 

(the parameters of which are shown in Fig. 5) for 

diffraction forces on an embedded vertical 

circular cylinder, as modified by Mogridge and 

Jamieson (1976). Following MacCamy and 

Fuchs, it is assumed that there are two 

irrotational wave patterns, one is the incident 

wave pattern (represented by the velocity 

potential,φI) and the other is diffraction pattern 

(represented by φD). Thus, the total potential 

function is calculated from the following 

equation(McCormick, 2010): 

φ = φI+ 𝜑𝐷                                                    (22) 

 

However, the above equation is established 

assuming that the wave height ratio to water 

depth and wavelength is small, that is to assume 

that waves are linear and there is the possibility 

of superposition (i.e., adding two potential 

functions). 

In equation (22),velocity potential function of 

the colliding wave is:  

𝜑𝐼
=(𝐻𝐼𝑔2𝜔⁄ ){cosh[𝑘(𝑧+ℎ)]cosh(𝑘ℎ)⁄ }sin(𝑘𝑥
−𝜔𝑡)
=(𝐻𝐼𝑔2𝜔⁄ ){cosh[𝑘(𝑧+ℎ)]cosh(𝑘ℎ)⁄ }sin[𝑘𝑟cos(𝛽)
−𝜔𝑡] =−(𝐻𝐼𝑔2𝜔⁄ ) 
{cosh[𝑘(𝑧+ℎ)]cosh(𝑘ℎ)⁄ }ℜ{𝑖𝑒[𝑘𝑟cos(𝛽)−𝜔𝑡]}   (23) 
 

In the above equation, ℜ represents the real part 

of the complex statement inside the brackets. 

This complex statement, is time-dependent and 

in the circular plane of the structure (as shown in 

Fig. 3-b) is a function of radius r and the angle 

β.Therefore, it can be written as Bessel 

functions. Thus, the following equation can be 

obtained: 

𝜑𝐼=−(𝐻𝐼𝑔2𝜔⁄ ){cosh[𝑘(𝑧+ℎ)]cosh(𝑘ℎ)⁄ } 

ℜ{𝑖[𝑗0(𝑘𝑟)+2∑ 𝑖𝑚𝑗𝑚(𝑘𝑟)cos(𝑚𝛽)]𝑒
−𝑖𝜔𝑡

∞

𝑚=1

}

=−(𝐻𝐼𝑔2𝜔⁄ ){cosh[𝑘(𝑧+ℎ)]cosh(𝑘ℎ)⁄ }ℜ 

{∑ 𝑖𝑚+1𝜀𝑚𝑗𝑚(𝑘𝑟)cos(𝑚𝛽)𝑒
−𝑖𝜔𝑡}∞

𝑚=0          (24) 

 

The relation between the exponential function of 

equation (23) and mthsentence of the Bessel 

functionof the first kindrelated to equation (24), 

which is represented as𝐽𝑚(𝑘𝑟), is found 

inAbramowitz and Stegun (1965). Note that k is 

the wave number, and r is the radius 

variable,therefore for a specific wave with a 

certain length, wave number is a constant value 

and r is a  variable value;this multiplication 

canbe expressed as variable x. Potential function 

that is representative of diffraction wave must 

satisfy Laplace equation in cylindrical 

coordinates: 

∇2(𝜑𝐷)=(
𝑟𝜕2𝜑𝐷

𝑟𝜕𝑟
2 )+(

𝜕2𝜑𝐷

𝑟2𝜕𝛽2
)+(

𝜕2𝜑𝐷

𝜕𝑧2
)=0 (25) 

 

(A) (B) 
 

Fig. 5: Marking to analyze the diffraction forces on theembeddedvertical circular cylinder: (A) side view and 

advancing direction of the wave. (B) Top view of the cylindrical coordinate system (McCormick, 2010) 
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The answer to this equation can be obtained by 

the method of separation of variables. Imposing 

seabed boundary conditions on the answer,will 

result in the following equation for diffraction 

function (Abramowitz and Stegun, 1965). 
𝜑𝐷=(𝐻𝐼𝑔2𝜔⁄ ){cosh[𝑘(𝑧+ℎ)]cosh(𝑘ℎ)⁄ }  

ℜ{∑ E𝑚[𝐽𝑚(𝑘𝑟)+𝑖𝑌𝑚(𝑘𝑟)]cos(𝑚𝛽)𝑒
−𝑖𝜔𝑡}

∞

𝑚=0

=(𝐻𝐼𝑔2𝜔⁄ ){cosh[𝑘(𝑧+ℎ)]cosh(𝑘ℎ)⁄ } 

ℜ{∑ E𝑚𝐻𝑚
(1)
(𝑘𝑟)cos(𝑚𝛽)𝑒−𝑖𝜔𝑡}∞

𝑚=0                  (26) 

 

The above potential function indicates a circular 

wave that radiates to the far side of the source. In 

this equation, 𝐸𝑚is a constant parameter that is 

associated with m, the counter of Bessel 

function. In equation (26), 𝑌𝑚(𝑘𝑟) is 

themthsentence of the Bessel functionof the 

second kind, and 𝐻𝑚
(1)
(𝑘𝑟) is themth sentence of 

Hankel function of the first kind. Using the 

above equation, the relation between Henkel 

function and Bessel functions can be established: 

𝐻𝑚
(1)
(𝑘𝑟) = 𝐽𝑚(𝑘𝑟) +𝑖𝑌𝑚(𝑘𝑟)                       (27) 

 

Henkel function is also called Bessel functionof 

the third kind. To obtain the potential statement 

for the entire wave range, we should add the 

statement of the velocity potential of colliding 

wavein the equation (24) to the statement 

ofdiffraction function in equation (26).The 

resultwill be: 

φ=(𝐻𝐼𝑔2𝜔⁄ ){cosh[𝑘(𝑧+ℎ)]cosh(𝑘ℎ)⁄ } 

ℜ{∑ [−𝑖𝑚+1𝜀𝑚𝐽𝑚(𝑘𝑟)+E𝑚𝐻𝑚
(1)(𝑘𝑟)]

∞

𝑚=0

 

cos(𝑚𝛽)𝑒−𝑖𝜔𝑡}                                              (28) 

 

𝐸𝑚is obtained from imposing wet surface 

boundary conditions of a fixed cylinder. 

Normally, there is no perpendicular current to 

the surface of the structure, therefore the radial 

factor offloating velocity on the surface of the 

cylinder is zero: 
𝜕𝜑

𝜕𝑟(𝑟=𝑎)
=0                                                    (29) 

 

Imposing this condition on the derivative, with 

respect to r in (28) and inserting r = a will result 

in the following equation: 

E𝑚=𝜀𝑚𝑖
𝑚+1 𝑑𝐽𝑚 𝑑𝑟⁄

𝑑𝐻𝑚
(1)
𝑑𝑟𝑟=0⁄

≡𝜀𝑚𝑖
𝑚+1 𝐽𝑚

′(𝑘𝑎)

𝐻𝑚
(1)′
(𝑘𝑎)
 ,

𝑚=0,1,2,…(                                                 (30) 

 

By ('), it means the derivative relative to (r) and 

𝜀𝑚 represents Neumann’s symbol,thusfor m ≥ 1, 

𝜀0=1and 𝜀𝑚=2. After solving the wave 

velocity potential function around the GBS 

according to equation (28), imposing boundary 

conditions, and resolving the fluid pressure, the 

wave horizontal forceis calculated by integrating 

the pressure on the surface of GBS. The real part 

of the equation of the horizontal force is as 

follows(McCormick, 2010): 
𝐹𝑥=

−∫ ∫ 𝑝𝑟=𝑎cos(𝛽)𝑎𝑑𝛽𝑑𝑧
2𝜋

0
=

0

−ℎ
𝜌∫ ∫ ℜ

2𝜋

0
{
𝜕𝜑

𝜕𝑡
|𝑟=

0

−ℎ

𝑎}cos(𝛽)𝑎𝑑𝛽𝑑𝑧=

2𝜌𝑔𝐻1

𝑘
tanh(𝑘ℎ){

[𝐽1
′(𝑘𝑎)cos(𝜔𝑡)−𝑌1

′(𝑘𝑎)sin(𝜔𝑡)]

𝐽1
′(𝑘𝑎)+𝑌1

′(𝑘𝑎)
}=

2𝜌𝑔𝐻1

𝑘
tanh(𝑘ℎ)

sin[𝜔𝑡−𝜎(𝑘𝑎)]

√𝐽1
′(𝑘𝑎)+𝑌1

′(𝑘𝑎)
=

2𝜌𝑔𝐻1

𝑘
tanh(𝑘ℎ)𝛬(𝑘𝑎)sin[𝜔𝑡−𝜎(𝑘𝑎)]             (31) 

 

In (31), the amplitude function is defined as 

follows: 

𝛬(𝑘𝑎)=
𝑘

√𝐽1
′2(𝑘𝑎)+𝑌1

′2(𝑘𝑎)

=

1

√[𝐽0(𝑘𝑎)−
1

𝑘𝑎
𝐽1(𝑘𝑎)]

2+[𝑌0(𝑘𝑎)−
1

𝑘𝑎
𝑌1(𝑘𝑎)]

2
              (32) 

 

As stated, 𝛬(𝑘𝑎) is the amplitude function 

known asMacCamy-Fuchs amplitude function. 

Phase angle 𝜎(𝑘𝑎)in (31), known as MacCamy-

Fuchs phase angle, is obtained from the 

following equation: 

𝜎(𝑘𝑎)=tan−1[
𝐽1
′(𝑘𝑎)

𝑌1
′(𝑘𝑎)
]=tan−1[

𝐽0(𝑘𝑎)−
1

𝑘𝑎
𝐽1(𝑘𝑎)

𝑌0(𝑘𝑎)−
1

𝑘𝑎
𝑌1(𝑘𝑎)

]   

                                                                         (33) 

 

Finally, to get the torque wave, we should 

calculate the forces all over the GBS (the base of 

the GBS that is affected by wave force), then all 

those forces should be added together. As seen 

in Fig.2, the base diameter after the depth of 10 

meters from the surface of the water increases by 

depth increase; this makes it challenging to 

calculate the force at these points. 
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RESULTS AND DISCUSSION 

Through the next sections results of this research 

are presented. First the wave force and moment 

that are exerted on the platform are calculated. 

Next, the time history of the response is solved 

using the one-degree-of-freedom motion 

equation. Moreover, a curve-fitting regression 

model is developed for the structural response. 

Finally, a platform stability index is defined and 

presented so that a robust decision can be made 

about the structural stability in rocking motion. 

 

MacCamy-Fuchs amplitude and phase 

functions 

In (31), to calculate the horizontal force of the 

wave exerted on the GBS, the amplitude 

function 𝛬(𝑘𝑎) and phase angle 𝜎(𝑘𝑎) are 

calculated. Figs. 6 and 7 show the amplitude 

function and phase angle, respectively. They are 

obtained using Bessel functions in accordance 

with the given explanations. 

 

 
 

Fig. 6: MacCamy-Fuchsamplitude function relative to dimensionless variable ‘ka’ 

 

 
 

Fig. 7: MacCamy-Fuchsphase angle relative to variable ‘ka’ 
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Calculating the force and torque of the wave 

exerted on the column 

The base of the GBS is divided into small 

elements; there are 45 elements from the water 

surface over thecaisson, up to a height of 90 

meters(since the water is deep and with respect 

to the effective water depth,which according to λ 

/ 2 is 50 m, the wave force is not exerted on 

thecaisson.More details are provided in section 

4.3). With respect to𝛬(𝑘𝑎) for each element, the 

force in each element can be calculated using 

equation (31); it should be noted that, to find the 

maximum force exerted on the element,sin[ωt−
σ(ka)] from force equation is considered equal 

to a unit.The total wave force exerted on the 

base of GBS,is derived from combining forces 

exerted on the elements. Thistotal wave force is 

examinedfor the element sizefrom 2 meters to 

0.1 meter.The results for the changein 

elements’length are presented in Fig. 8. To have 

a better view of the effect of elementsize on the 

results of computations, the final part of the 

column at a depth of 90 meters is shown from a 

closer view in Fig. 9. 

As seen in Figs. 8 and 9, the force tends to 

7.51MN. This indicates that with smaller 

elements, more accurate numbers can be 

achieved. When decreasing the element length 

from 2 m to 0.1 m (i.e., 20 times smaller), the 

total force decreases from 7.56 to 7.51 that is 

less than 0.67 percent difference. Nevertheless, 

according to available computing capability, the 

element size of 0.1 m will be used in the 

following equations.To calculate the torque,it is 

enough to multiply the force in each element 

byits arm.The torque is considered around the 

intersection point of the vertical axis of GBS and 

bed. Therefore, its arm, including the height of 

caisson plus the base of GBS (from caisson up to 

water level), is 150 meters (the torque arm of 

each element is considered from the center of the 

element up to a point where the torque is taken 

over). Of course, by increasing depth up to 90 

meters, the force and torque values reach 7.51 

and 1035.8 MNper meter, respectively. It is 

noteworthy that the slope of the force and torque 

changes decreases as going to the water depth. 

That is to say, the force and torque gradients are 

slower in deeper water; in other words, the effect 

of wave significantly decreases by depth 

increase. 

 

 
 

Fig. 8: Changes of the wave forces exerted on the GBS, from the water level to any specified depth; a wave with 

a height of 6 and length of 100 meters 
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Fig. 9: Close view of the total force difference.It is clear that smaller elements give better results 

 

Calculating the torqueof the wave exerted on 

the caisson 

This torque is different from the torque created 

by the force exerted on the platform. The torque 

of the wave exerted on caisson𝑚𝑝𝑐, is created by 

the force coupleexerted on caisson caused by the 

wave passing over it. This wave torque is 

calculated by computing the pressure exerted on 

the caisson which iscaused bythe wave passing 

over it. Then, having the pressure value and area 

of the upper surface of caisson, the force will be 

calculated. 

𝑝=𝜌𝑔𝐴
𝑐𝑜𝑠ℎ𝑘(𝑧+𝑑)

𝑐𝑜𝑠ℎ𝑘𝑑
𝑐𝑜𝑠(𝑘𝑥−𝜔𝑡)                (34) 

 

To ease the distribution of wave pressure on the 

upper surface of the caisson, instead of the 

cosine form in (34), this study assumes the wave 

as a rectangular wave. That is to say, it is 

assumed that one half of the surface of the 

caisson is under maximum pressure in (34), and 

theother half is under suction. Therefore, a force 

coupleis exerted on the caisson which is 

overestimated and in terms of design is 

conservative. Thus, for a wave with a height of 6 

meters, a length of 100 meters, and a water depth 

of 150 m, the following equation is written: 

𝑝=1025∗9.81∗
6

2
∗
𝑐𝑜𝑠ℎ(0.062∗(−90+150))

𝑐𝑜𝑠ℎ(0.062∗150)
=113.87  𝑝𝑎 

𝐹=113.87∗
𝜋∗452

2
=362204.81 𝑁                  (35) 

The obtained force acts as pressure and suction 

couple on the surface of the caisson, the arm of 

which, with respect to the center of the two 

semi-circles, is38.19 meters, and the related 

torque is calculated as follows: 

𝑀=38.19∗𝐹=13832601.69  𝑁.𝑚         (36) 

 

Therefore, the value of the torque resulted from 

the force couple on the caisson which has been 

overestimated, relative to the torque exerted on 

the column is 0.013. Since the value is 

negligible,𝑚𝑝𝑐can be ignored.Note that, the 

torque of the wave exerted on the column is 

1035.8 MN per meter. 

 

Placing values in the rocking motion equation 

By placing the structural parameters and wave 

torque in the rocking motion equation for a wave 

with a height of 6 m, the following result is 

obtained: 

(1.36∗1012)θ̈+(5.96∗1011)θ̇+(3.23∗1012)θ
=1.09∗109 

 

As the amplitude of the rocking motion was 

obtained in (32), for a GBS with a column of 90 

meters, a foundation with a 90 m diameter, dry 

weight of 400 million kilograms, and a wave 

with 100 m length and 6 m height, the rocking 

motion angle is obtained as follows: 

θ=4.15×10−4rad=2.38×10−2deg
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Of course, the problem solvingprocess presented 

in this article can also be used forother values of 

GBSand parameters ofa regular wave. In the 

following, results are analyzedusing MATLAB 

programming to better understand the issue and 

draw conclusions. 

 

Time history of rocking motion response  

According to Fig. 10, where changes of the 

structure response over time with different 

wavelengths(once drawn with a wavelength of 

20, then from 50 to 350 nm, it is drawn every 50 

nm)are presented, it is inferred that the response 

of the structure to a wave with a wavelength of 

20 is placed within the range of -0.002 to 

0.002.As shown in Fig. 10, the most responses 

of the structure is to a wave with a wavelength 

of 50, indicating that the frequency of the 

structure is getting closer to the frequency of the 

wave,which in turn suggests the occurrence of 

resonance. Moreover, by increasing the 

frequency wavelength of the structure, we get 

away from the frequency of the wave. Since this 

response is accompanied by phase difference,the 

diagrams are not started from zero degree. 
 

Wave torque and structure responsevs. wave 

height and frequency 

According to the coding done in MATLAB, 

parameters of force, torque, frequency,structure 

response, and phase angle for a wave of 8 meters 

are extracted from the program and presented in 

Table 1 and curves that indicate the changes of 

the torque and phase angle, as well as the 

dynamic amplificationfactor and structure 

response relative to frequency. Table 1presents 

the characteristics of different parameters for a 

wave of 8 meters.  

 

 
 

Fig. 10: The changes of the structure response over time for a wave with a height of 8 m and different 

wavelengths 

 

Table 1: Characteristics and parameters of a wave with 8 meters height 
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According to Fig. 11, approximately from the 

frequency of 0.35,swing angle of the structure 

takesupward direction and the maximum 

oscillation of the structure occurs in frequency 

of1.4. From that frequency on, it descends up to 

2.2 and then re-ascends. Frequency of ω=
1.4 𝑟𝑎𝑑/𝑠at which the maximum response 

occurs, according to the data in Table 1 

corresponds to the ratio of frequency of β = 0.95; 

that is to say, in this range, resonance occurs.The 

results of Fig. 11 also confirms this issue. It 

should be noted that using curve fitting toolbox 

in MATLAB software, a continuous curve in 

Fig. 11 is fitted to discrete calculated data;using 

curve changes(the mathematical equation of 

which is as a rationalfunction with polynomials 

in the numerator and denominator)it is possible 

to obtain the structure response in any desired 

frequency with high accuracy. 
 

Platform stability index 

Finally, in order for the stability of the platform 

to be examined in the range of wave changes, 

the study defines the platform stability index as 

the ratio of overturning moment to restoring 

moment, according to the following equation: 

𝑆𝐼=
𝑀0

𝑘×𝜃
                                                         (37) 

𝑀0: overturning moment 

𝑘×𝜃: restoring moment is obtained through  

 

multiplyingK (soil stiffness) by𝜃 (swing amplitude of 

the structure) 

 

In Fig. 12, the stability index is drawn for a 

wave with a height of 6 meters and wavelength 

range of 10 to 500 meters.According to physics 

of ocean waves (World Meteorological 

Organization, 1998), wind-generated gravity 

waves witha significant height index (i.e., more 

than 6 m in this study) do not have a wavelength 

less than 50 meters. Therefore, it is clear from 

Fig. 12 that GBS in rocking motion is within 

safe limits. 

 

CONCLUSION 

In this study, rocking motion of a GBS, under 

the effect of wave torque, was formulated and 

modeled, and rotation angle was solvedusing 

harmonic response analysis. The dominant 

theory regarding the interaction of wave and 

GBS is diffraction theory. After solving the 

velocity potential function, dynamic pressure of 

the wave was obtained by Bessel functions of 

first and second kind.The results of the present 

study indicated that the response of the rocking 

motion of GBS had significant changes with 

respect to height and wavelength; and, according 

to the curves fitted to the swing angle data, the 

stability of GBS can thoroughly and 

comprehensively be examined. 

 

 
 

Fig. 11: Changes of theswing angle of the structurerelative to the frequency  
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Fig. 12: Platform stability index 

 

However, the results of this study are based on 

the following assumptions, and if other 

conditions are considered, it is necessary to 

correct the mathematical relations: 

1. The wave theory used in this study is a 

lineartheory. 

2. GBS has one column 

3. GBS is not connected to soil. 

4. GBS is assumed as a rigid structure. 

5. Waves are regular harmonic waves. 

 

In this piece of research work, analytical 

solution rather than numerical solution was 

preferred, since having the mathematical 

relations of the responses, it is possible to 

resolve rocking motion response in any wave 

frequency,and because the domain and phase 

functions of the response are separately clear. 

In comparison to similar works, the present 

article solved the differential equation including 

the wave forces and moment while other 

research only solved the homogeneous 

differential equation and found the natural 

frequency of the gravity structure. 

The following suggestions are proposed to 

complete and further develop this study. First, 

irregular waves should be studiedin dealing with 

GBS. Compared with regular waves,in the 

studying of which harmonic response analysis 

was used, analyzing the response of periodic 

load using Fourier series can determine the 

response of platform to irregular waves. Second, 

the effect of nonlinear wave theories on the 

results of rocking motion analysis should be 

studiesmore completely.If GBS is in shallow 

water, theories related to shallow water 

(e.g.,cnoidal theory) should be used, and if the 

wave height is greater than the linear 

range,Stokes’ higher order theories should be 

applied. Third, diffraction of waves after hitting 

GBS,should be simulated using numerical 

methods. Fourth, it is proposed to use software 

in the simulation of the stiffness of soil, and 

define the results as coefficients of stiffness. 

Fifth, it is proposed to consider the effects of 

bending and deformation of the main column of 

GBSas a fixed end beamin studying the 

vibrational modes of the column using modal 

analysis and resonance probability. Finally, 

studying and simulatingwave slamming 

belowthe deck of GBS and analyzing the 

response of GBS to this impact load can be 

considered in further studies. 
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