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ABSTRACT: Because of fluctuation in leg tension, pitch motion is very effective fatigue and life safety of leg 
elements in tension leg structures (TLSs). In this paper an exact solution for pitch vibration of a TLS interacting with 
ocean wave is presented. The legs of TLP are considered as elastic springs. The flow is assumed to be irrotational and 
single-valued velocity potentials are defined. The effects of radiation and scattering are considered in the boundary 
value problem. Because of linear behavior of legs during wave excitation, ignoring coupling effects with other 
degrees of freedom, the analytical solution of pitch response has good agreement with the real behavior of the 
structure. 
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INTRODUCTION
1 The TLS is a kind of compliant-type structure 
vertically moored in the ocean. It can be a system for 
oil exploration in deep water and moored reservoir 
as well as a wave breaker in shallow water. The 
structure is considered as a rigid body having six 
degrees-of-freedom, namely surge, sway, heave, 
roll, pitch and yaw. The Tension Leg Platform is a 
hybrid structure with respect to horizontal degrees-
of-freedom, it is compliant and behaves like a 
floating structure, whereas with respect to the 
vertical degrees-of-freedom, it is stiff and resembles 
a fixed structure and is not allowed to float freely. 
Also among the various degrees of freedom, vertical 
and rotational motion (heave and pitch) are very 
important because of the direct effect on the stress 
fluctuation that leads to fatigue and fracture of the 
legs. Therefore conceptual studies to understand the 
dynamic vertical response of TLS can be useful for 
designers.  
Liu et al. described an analysis of the non-linear 
effects and identification of non-linear pitch motion 
on tension leg platforms (Jui-Jung et al., 2004). The 
purpose of their paper was to accurately identify 
pitch motion on the tension leg platform and to 
interpret the non-linear effects using statistical 
methods, the NARMAX methodology, and the 
higher order frequency response functions. 
 
*Corresponding Author Email: tabesh_mreza@yahoo.com 

An analytical solution for surge motion of tension 
leg platform (TLP) was proposed and demonstrated 
(Lee and Lee, 1993; Lee, 1994; Lee, 1999), in which 
the surge motion of a platform with pre-tensioned 
tethers was calculated. In that study, however, the 
elasticity of tethers was only implied and the motion 
of tethers was also simplified as on-line rigid-body 
motion proportional to the top platform. Thus, both 
the material property and the mechanical behavior 
for the tether incorporated in the tension leg 
platform system were ignored. When this 
simplification was applied, no matter what the 
material used was or what the dimension of tethers 
was, the dynamic response of the platform would 
remain the same in terms of the vibration mode, 
periods and the vibration amplitude. An important 
point in that study was linearization of the surge 
motion. But it is obvious that the structural behavior 
in the surge motion is highly nonlinear because of 
large deformation of TLP in the surge motion degree 
of freedom (geometric nonlinearity) and nonlinear 
drag forces of Morison equation. Therefore the 
obtained solution is not true for the actual 
engineering application. For pitch degree of freedom 
the structural behavior is linear, because there is not 
geometric nonlinearity in the pitch motion degree of 
freedom and drag forces on legs have no vertical 
component. In this paper the analytical solution of 
pitch vibration is presented. 
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A continues model for vertical motion of TLP 
considering the effect of continues foundation has 
been reported (Tabeshpour et al., 2004). The effect 
of added mass fluctuation on the pitch response of 
tension leg platform has been investigated by using 
perturbation method both for discrete and continues 
models (Tabeshpour et al., 2006a). An analytical 
heave vibration of TLP with radiation and scattering 
effects for undamped system has been presented 
(Tabeshpour et al., 2006b). Similar method is 
presented for hydrodynamic pitch response of the 
structure (Tabeshpour et al., 2006). 
In this study the equation of the motion, and the 
corresponding solution for pitch motion of the 
tension leg platform system subjected to sea wave, is 
derived and solved analytically. Based on Lee and 
Lee (1993) results, first the scattering problem is 
solved and the results were used to calculate the 
forcing function for the radiation problem and then 
both solutions were used for the solution of the pitch 
motion. The structural model is very simple but 
several complicated factors such as buoyancy, 
scattering, radiation and simulated ocean wave load 
are considered. 
 
MATERIALS AND METHODS 
General Wave Theory 
For the inviscid and incompressible fluid and 
irrotational flow, a single-valued velocity potential φ
can be defined as:  
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where u is the flow velocity vector. The velocity 
potential satisfies the Laplace equation:  
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and the Bernoulli equation  
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in the flow field, where p is the pressure and wρ is 
the water density.  
A two-dimensional tension leg platform interacting 
with a long crested linear wave propagating in the x-
direction is considered here as is shown in Fig. 1.
The wave form and the associated velocity potential 
are given accordingly as,  
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where iA is the wave amplitude, g is the 
gravitational constant, h is the water depth, 

Tπ=ω 2 is the angular frequency with T as the 
period, and ikK −=1 , where Lk π= 2 is the wave 
number with L as the wave length. 1K satisfies the 
dispersion relation  
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RESULTS AND DISCUSSION 
Boundary Value Problem 
In the platform system, the motion of the structure 
induced by the small amplitude incident wave is 
assumed to be small. The wave induced structural 
motion can be solved from the imposed boundary 
problem. Because of the linearity of the problem, the 
problem can be incorporated into a scattering and a 
radiation problem. The wave force calculated from 
the scattering problem provides the force function in 
the radiation problem, and the forced oscillation then 
generates outgoing waves.  
A tension leg platform system is illustrated in Fig. 1,
where the flow field is divided into three regions 
with two artificial boundaries at bx −= and bx = .
In region I, the total velocity potential Iφ consists of 
incident waves iφ , scattered waves Isφ , and radiated 
waves Iwφ .

IwIsiI φ+φ+φ=φ (7) 
 
In region II and III, the total velocity potential IIφ

and IIIφ consists of scattered waves IIsφ and IIIsφ ,
and radiated waves IIwφ and IIIwφ . The subscript s
denotes the scattering problem and w denotes the 
radiation (wave making) problem 
 

IIwIIsII φ+φ=φ (8) 

IIIwIIIsIII φ+φ=φ (9) 
 
All of the velocity potentials satisfy the Laplace 
equation. Furthermore, Sommerfeld’s radiation 
condition is satisfied at the infinity of region I and 
III to secure unique solutions 
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where wC is the wave celerity. 
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Fig. 1: Illustration for the scattering problem (Lee et al. 1999) 

 
Scattering and Radiation Problems 
In the scattering (diffraction) problem, the incident 
wave is considered to be diffracted by a fixed 
structure. The corresponding boundary value 
problem was also shown in Fig. 1. In the radiation 
problem the structure is considered to be forced into 
motion by the wave force induced by incident 
waves and scattered waves. The corresponding  
boundary value problem is illustrated in Fig. 2. The 
displacement of the dragged pitch motion is given 
by 
 

)exp( tiS ω−=θ (11) 
 
where S is the unknown amplitude of the pitch 
motion.  
Applying the method of the separation of variables, 
matching the horizontal boundary conditions in 
each region, and applying Sommerfeld’s condition 
to regions I and III, the corresponding surface 
elevation and velocity potential of scattering (s) and 
radiation (w) problems can be found as follows 
(Lee and Lee, 1993):  
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where the eigenvalues jK can be solved from the 
dispersion equation  
 

)tan(2 hKgK jj=ω (16) 
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where the eigenvalues IIjK can be solved from the 
dispersion equation 
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where δ is the Kronecker delta, and the notations 

of 
dZZ ** , **ZZ , and oZα are defined in the 

Appendix (A). It is clear that equations (19) and 
(21) are obtained from the kinematic boundary 
conditions, and (20) and (22) from the dynamic 
boundary conditions. 
Equations (19) - (22) can then be solved for the four 
series of the unknowns IsjA , IIsPjA , IIsNjA and 

IIIsjA in the scattering problem and substituted into 
the corresponding equations to calculate the follow 
properties. However, for the radiation problem 
equations (20) and (22) involve the unknown S, and  
therefore an additional equation is required to 
resolve all unknowns IwjA , IIwPjA , IIwNjA and 

IIIwjA . More calculations are presented in 
Appendix (B). 
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Fig. 2: Illustration for the radiation problem 

 
Simple Model for Motion of the Platform 
The equation of motion of the platform ignoring 
structural damping of tethers is as follows (see Fig. 3)
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where 

0I : is the moment of inertia of the platform structure, 

erC : is the equivalent viscous structural damping, 

erK : is the equivalent stiffness of the platform, 

pyM is the moment wave force acting on pitch 
direction of the structure, 
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mass and 
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−= is the radiation damping moment 

force from fluid-structure interaction.  

aI and rpC will be determined in this paper. The 
equivalent stiffness of the platform system is 
presented, when the material property and the tether 
dimension are taken into account, as  
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tA is the total area of the tethers cross section, E is 
the Young modulus of the tether material and l is the 
length of the tether.  
The wave force moment pyM can be obtained 
through the integration of the total hydrodynamic 
pressure over the surfaces of the structure   

)exp(0 tiMM pypy ω−= (27) 
where 

ZFXFM wxwzpy ×+×−= 000 (28) 
in which  

0
wzF is the wave force in z direction, 
0

wxF is the wave force in x direction, 
X is the distance between the center of mass (C.M.) 

and center of stiffness (C.S.) in x direction and  



Z is the distance between the center of mass (C.M.) 
and center of stiffness (C.S.) in z direction.
Structural modeling and generated loads are shown in 
Fig. 3.

Fig. 3: Structural modeling and generated loads

In order to determine the vertical and hori
forces, one can integrate the hydrodynamic pressure 
on the bottom and lateral surface of the structure 
respectively. After some calculation these forces are 
determined as 
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Added mass and radiation damping
Added mass and radiation damping are obtained as 
follows  
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CONCLUSION 
The analytical solution of pitch response of TLP was 
presented for a simple model. The effects of radiation 
and scattering were considered in the boundary value 
problem. A set of equations to describe the motion of 
the platform subjected to the wave-induced pitch 
motion and the flow-induced drag motion were 
derived, and the corresponding close form analytical 
solution was presented as an infinite series form for 
the dynamic behavior of the platform utilized for the 
tension leg platform structural system.  
 
Appendix (A) 
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Appendix (B) 
The complete solution of IIwφ is 
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where h
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IIwφ are the homogeneous and 
particular parts of the IIwφ respectively.  
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or 
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Because of rigid body rotation around point (0, 0z ), 
f(x) should be considered as a linear function  

xfxf 0)( =

then                                            

)(
)( 0

dha
xfxg
−

=′′ and 
3)(2

)(
3

0 x
dha

f
xg

−
= or 

)(2
3/)( 32
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xxhzfp

IIw
p
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++−+ψ=φ (B10)  

 
and 

02

2

2

2

=
∂
ψ∂

+
∂
ψ∂

zx
IIwIIw  (B11)  

 
with the following boundary conditions 
 

0=
∂
ψ∂

−= hz

IIw

z
(B12)  

0=
∂
ψ∂

−= dz

IIw

z
(B13)  

 
The homogeneous part of solution of the eq. (B11) is 
as follows  
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