Int. JMAr.Sci.Eng., 3(2), 91-98, Spring 2013
ISSN 2251-6743
© TAU

Hydrodynamic damped pitch motion
of tension leg platforms

M. R. Tabeshpour; *B. Ataie Ashtiani; *M. S. Seif: ’A. A. Golafshani

! Center of Excellence in Hydrodynamics and Dynamics of Marine Vehicles, Mechanical Engineering Department, Sharif

University of Technology, Tehran, Iran

? Civil Engineering Department, Sharif University of Technology, Tehran, Iran
% Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran

Received 5 February 2013; revised 2 March 2013; accepted 27 March 2013

ABSTRACT: Because of fluctuation in leg tension, pitch motion is very effective fatigue and life safety of leg
elements in tension leg structures (TLSs). In this paper an exact solution for pitch vibration of a TLS interacting with
ocean wave is presented. The legs of TLP are considered as elastic springs. The flow is assumed to be irrotational and
single-valued velocity potentials are defined. The effects of radiation and scattering are considered in the boundary
value problem. Because of linear behavior of legs during wave excitation, ignoring coupling effects with other
degrees of freedom, the analytical solution of pitch response has good agreement with the real behavior of the

structure.
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INTRODUCTION

The TLS is a kind of compliant-type structure
vertically moored in the ocean. It can be a system for
oil exploration in deep water and moored reservoir
as well as a wave breaker in shallow water. The
structure is considered as a rigid body having six
degrees-of-freedom, namely surge, sway, heave,
roll, pitch and yaw. The Tension Leg Platform is a
hybrid structure with respect to horizontal degrees-
of-freedom, it is compliant and behaves like a
floating structure, whereas with respect to the
vertical degrees-of-freedom, it is stiff and resembles
a fixed structure and is not allowed to float freely.
Also among the various degrees of freedom, vertical
and rotational motion (heave and pitch) are very
important because of the direct effect on the stress
fluctuation that leads to fatigue and fracture of the
legs. Therefore conceptual studies to understand the
dynamic vertical response of TLS can be useful for
designers.

Liu et al. described an analysis of the non-linear
effects and identification of non-linear pitch motion
on tension leg platforms (Jui-Jung ef al., 2004). The
purpose of their paper was to accurately identify
pitch motion on the tension leg platform and to
interpret the non-linear effects using statistical
methods, the NARMAX methodology, and the
higher order frequency response functions.
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An analytical solution for surge motion of tension
leg platform (TLP) was proposed and demonstrated
(Lee and Lee, 1993; Lee, 1994; Lee, 1999), in which
the surge motion of a platform with pre-tensioned
tethers was calculated. In that study, however, the
elasticity of tethers was only implied and the motion
of tethers was also simplified as on-line rigid-body
motion proportional to the top platform. Thus, both
the material property and the mechanical behavior
for the tether incorporated in the tension leg
platform system were ignored. When this
simplification was applied, no matter what the
material used was or what the dimension of tethers
was, the dynamic response of the platform would
remain the same in terms of the vibration mode,
periods and the vibration amplitude. An important
point in that study was linearization of the surge
motion. But it is obvious that the structural behavior
in the surge motion is highly nonlinear because of
large deformation of TLP in the surge motion degree
of freedom (geometric nonlinearity) and nonlinear
drag forces of Morison equation. Therefore the
obtained solution is not true for the actual
engineering application. For pitch degree of freedom
the structural behavior is linear, because there is not
geometric nonlinearity in the pitch motion degree of
freedom and drag forces on legs have no vertical
component. In this paper the analytical solution of
pitch vibration is presented.
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A continues model for vertical motion of TLP
considering the effect of continues foundation has
been reported (Tabeshpour et al., 2004). The effect
of added mass fluctuation on the pitch response of
tension leg platform has been investigated by using
perturbation method both for discrete and continues
models (Tabeshpour ef al, 2006a). An analytical
heave vibration of TLP with radiation and scattering
effects for undamped system has been presented
(Tabeshpour et al, 2006b). Similar method is
presented for hydrodynamic pitch response of the
structure (Tabeshpour et al., 2006).

In this study the equation of the motion, and the
corresponding solution for pitch motion of the
tension leg platform system subjected to sea wave, is
derived and solved analytically. Based on Lee and
Lee (1993) results, first the scattering problem is
solved and the results were used to calculate the
forcing function for the radiation problem and then
both solutions were used for the solution of the pitch
motion. The structural model is very simple but
several complicated factors such as buoyancy,
scattering, radiation and simulated ocean wave load
are considered.

MATERIALS AND METHODS

General Wave Theory

For the inviscid and incompressible fluid and
irrotational flow, a single-valued velocity potential ¢

can be defined as:

u={ ux,uz}T=—{ %?} (1)

where u is the flow velocity vector. The velocity
potential satisfies the Laplace equation:

7, 0%

2
o’ ozt @
and the Bernoulli equation
_o . p 2z=0 3)
at pw

in the flow field, where p is the pressure and p is

the water density.

A two-dimensional tension leg platform interacting
with a long crested linear wave propagating in the x-
direction is considered here as is shown in Fig. 1.
The wave form and the associated velocity potential
are given accordingly as,

1, = —id, exp[-(K,x +int)] “4)
and

4,8 coslK,(z + )]

b :F cos(K ,h)

exp[~(K,x+ion] (5

where A; is the wave amplitude, g is the
gravitational constant, # is the water depth,
®=2n/T is the angular frequency with 7' as the
period, and K, =—ik , where k =2m/L is the wave
number with L as the wave length. K, satisfies the
dispersion relation

o’ =-gK, tan(K,h) (6)

RESULTS AND DISCUSSION

Boundary Value Problem

In the platform system, the motion of the structure
induced by the small amplitude incident wave is
assumed to be small. The wave induced structural
motion can be solved from the imposed boundary
problem. Because of the linearity of the problem, the
problem can be incorporated into a scattering and a
radiation problem. The wave force calculated from
the scattering problem provides the force function in
the radiation problem, and the forced oscillation then
generates outgoing waves.

A tension leg platform system is illustrated in Fig. 1,
where the flow field is divided into three regions
with two artificial boundaries at x =—b and x =b.

In region I, the total velocity potential ¢, consists of
incident waves ¢, , scattered waves ¢, , and radiated

waves ¢, .

(I)I = (I)i +¢Is +(|)Iw (7)

In region II and III, the total velocity potential ¢,
and ¢,, consists of scattered waves ¢, and ¢, ,

and radiated waves ¢, and ¢, . The subscript s

denotes the scattering problem and w denotes the
radiation (wave making) problem

(I)[I = (I)[Is + ¢I[W (8)
(I)[II = (I)[Ils + ¢I[[w (9)

All of the velocity potentials satisfy the Laplace
equation. Furthermore, Sommerfeld’s radiation
condition is satisfied at the infinity of region I and
III to secure unique solutions

jim| 22+ 1201 (10)
w0 C, Ot

where C, is the wave celerity.
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Fig. 1: Illustration for the scattering problem (Lee et al. 1999)

Scattering and Radiation Problems

In the scattering (diffraction) problem, the incident
wave is considered to be diffracted by a fixed
structure. The corresponding boundary value
problem was also shown in Fig. 1. In the radiation
problem the structure is considered to be forced into
motion by the wave force induced by incident
waves and scattered waves. The corresponding
boundary value problem is illustrated in Fig. 2. The
displacement of the dragged pitch motion is given
by

0 = Sexp(—int) (11
where S is the unknown amplitude of the pitch
motion.

Applying the method of the separation of variables,
matching the horizontal boundary conditions in
each region, and applying Sommerfeld’s condition
to regions I and III, the corresponding surface
elevation and velocity potential of scattering (s) and
radiation (w) problems can be found as follows
(Lee and Lee, 1993):

In region I:
(I)Is/w =

i Als/wy'g COS[K/‘ (Z + h)]
o cos(K ;h)

(12)

exp[—(K; (x +b) —iot)]

Jj=l1

93

and

Mo =1 Aryy eXp[=(K (x+b)—iot)]  (13)

J=1

In region III:
O re/w =
i Ajyys/,7& cos[K; (z+h)]
® cos(K ;h)

(14)

exp[~(K; (x—b) +iwr)]

Jj=1
and

Nitsse = =1 Ay Xp[—(K, (x = b) +iot)]  (15)
j=1
where the eigenvalues K can be solved from the

dispersion equation

o* = gK ; tan(K ;h)
with
K, =—ik ,forj=1;

(16)

. T . .
(2/=3)7 <Kh<(j=Dm, for j=2

In region II:
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Z+ A]Ile)COSKm (z+h)+

¢[Is _H 1IsPl b

3 (1) (A oXPEK , (x +B)) +
= 17

Ay eXp(K (x—b)))cosK (= +h)
exp(—iar)

—x(z+h)y’+x’/3 +i§
2(h—d) @

X
[(Anwm Z + Ay } cosK, (z+h)+

¢11W =

3 (1) (A exP-K (x4 b)) +

J=2

Ay eXP(K 1y (x— b)) Jcos K, (z + )

(18)

exp(—iat)

where the eigenvalues K, can be solved from the
dispersion equation
—1
1j = (j )TE s 21
h—d

The series of four unknowns A

Is/wj > Alls/ wPj >
Ay and Ay, can further be solved from the

following four equations derived from the four
boundary conditions on the two vertical boundaries
of region II. They are, for o > 1

Ka <ZaZa>
cos K, h

11
l|:E<ZIHZa >d Apyg o *

Is/wa

Z(_I)FIKU, <ZH]Z > (19)
=

(_ Aﬂs/ij +exp( _2K11jb)A115/wNj )} i

ﬂA, )

osKh '

ﬁZ"S %
(22}

0, exp(K,b)

94

- lz <COISI(EK/1>’1) lb/w <le(lelu >
Jj=1
{[(1 - 8011 )(_I)Ohl - 6a1 ]AIIS/ wPa. +

(20)
[(1 =08, )(_1)(1_] =8, |eXp(=2K D) A}/ v } =

d
ZZ
iexp(Klb)% 4,
1

0 w

d
i<ZmTZOL>AIS/WP1 +

ii[(—l)’"‘ K, <Z,,/Za> x

21)
(exp(—ZK [Ijb)Al[s/ij + AI[[s/wNj )]

- < la />
’; cos(K 1)

<ZHaZIIa [(1_6(11)(—1)0(7l =0, [%

111s Iwj

(22)
0 s

(exp(_zKl[ab)Al[s/wPa + A”S/WNOL ) {0 w

where & is the Kronecker delta, and the notations

of <Z*Z*>d , <Z*Z*>, and <Z0> are defined in the

o

Appendix (A). It is clear that equations (19) and
(21) are obtained from the kinematic boundary
conditions, and (20) and (22) from the dynamic
boundary conditions.

Equations (19) - (22) can then be solved for the four

series of the unknowns A;;, App, Apgy; and

A 1 10 the scattering problem and substituted into

the corresponding equations to calculate the follow
properties. However, for the radiation problem
equations (20) and (22) involve the unknown S, and
therefore an additional equation is required to

resolve all unknowns A4 App;s Apy and

Twj >

AIIij' More calculations are presented in

Appendix (B).
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Fig. 2: Illustration for the radiation problem
Simple Model for Motion of the Platform where
The equation of motion of the platform ignoring
structural damping of tethers is as follows (see Fig. 3 AE 2AE
ping ( g3 K, =apxE 24, b 25)
, / h—d
d-e de
+C,—+K 6=M +M, +M 23
a2 Tdr ot Mo My (23) and
wher'e o K, = ipw ab? (26)
1, : is the moment of inertia of the platform structure, 3

C,, : is the equivalent viscous structural damping,
K, : is the equivalent stiffness of the platform,
M

ry
direction of the structure,
2

is the moment wave force acting on pitch

de .
M, =-1, e is the moment related to the added
t
mass and
M,, =-C,,— is the radiation damping moment

force from fluid-structure interaction.
I, and C,, will be determined in this paper. The

equivalent stiffness of the platform system is
presented, when the material property and the tether
dimension are taken into account, as

Kre :Krt +Krb (24)

95

A, is the total area of the tethers cross section, E is

the Young modulus of the tether material and / is the
length of the tether.

The wave force moment M, can be obtained

through the integration of the total hydrodynamic
pressure over the surfaces of the structure

— 0 .
M, =M, exp(-iot) 27
where
M, =-F_ XX +F)*xZ (28)
in which

F° is the wave force in z direction,

wz
0 - . . .
F,. is the wave force in x direction,

X 1is the distance between the center of mass (C.M.)
and center of stiffness (C.S.) in x direction and
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Z is the distance between the center of mass (C.M.)
and center of stiffness (C.S.) in z direction.

Structural modeling and generated loads are shown in
Fig. 3.

SIS

Fig. 3: Structural modeling and generated loads

In order to determine the vertical and horizontal
forces, one can integrate the hydrodynamic pressure
on the bottom and lateral surface of the structure
respectively. After some calculation these forces are
determined as

Fu?z = pia){zAllleb

+ Z (_1)#1 (Allst +A11ij )x 29)
j=2

exp( 2K ;b)) -1
K

cos K, (h—d)

|

exp(—iK ,b) — exp(iK ,b) 9
! cos( K ,h)
sin(Kh) = sin[K (h=d)]
Kl

piwY {(— n’ (AIst ~ Ay )x

sin( K ;h) — sin [K,(h - d)]}

1j

and [1]

0
wa -

ped

(30)

K.

J

Added mass and radiation damping
Added mass and radiation damping are obtained as
follows

1, =Re(M,)
C,, =Im(oM,)

€2))
(32)

in which

96

b )(Z —z,)dz—

M, = Jl (¢111w

The above integral can be calculated considering
equations (28), (29) and (30) as follows

x==b _¢Iw
(33)

g Xdx

M,=-F,_xX+F, xXZ (34)
where
b3
Fy, = p{[(h—d)+2A,,W|]b— si-a
> D Ay + Ay )% 35)
Jj=2
exp(2K,.b)—1
cosK ;. (h— d)M
b K/[/*
and
FOX = Z {(_ 1).].71 (Alst _AI[Ist)x
j=1
(36)

K

J

sin(K ;h) - sin[Kj (h— d)]}

Now the equation of motion is fully determined as
d*e de

Uy +1a)y+ (Co*Cp)3, +K,0=M, (37

Substituting equation (12) into (36) one obtains

[— (I, +1,)0* —i(C, +C, o+ Ke,]S =M" (38)

Defining
C, Im(oM
C = P - m(w 0) (39)
21, +1,)o, 2[I, +Re(M,)o,
and
K
o, = e (40)
I, +1,

and considering equations (31) and (32) one obtains

[ty e o] Vo RO )
+ImM,)ow S=M"°

py

o+K

er
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Or

7| “42)

\/(Ke, ~[1, + Re(M )]0 ) +

[z, + Re(M )¢, +Im(M )0 ) o

S =

CONCLUSION

The analytical solution of pitch response of TLP was
presented for a simple model. The effects of radiation
and scattering were considered in the boundary value
problem. A set of equations to describe the motion of
the platform subjected to the wave-induced pitch
motion and the flow-induced drag motion were
derived, and the corresponding close form analytical
solution was presented as an infinite series form for
the dynamic behavior of the platform utilized for the
tension leg platform structural system.

Appendix (A)
(z2.)=
0
J' cos[K ,(z + h)]cos[ K, (z + h)]d z = (A1)
_h
0 if jzao
h 1+s1n(2K0Lh) it j=a
2 2K, h
d
(Zy2.) =
—d
j cos[K (2 + h)]cos[K , (z +)Jd z = (A2)
—h
sin(K, +K,)(h-d) _
K, +K
1) PP ifK, =K,
2 |sin(K,; —K,)(h—d) Y
K, -K,
h 1+sm[2Ka(h—d)] itK, =K,
2 2K h j
d
<ZHjZIIa> =
—d
J' COS[K 1, (z + h)]coS[K , (z + h)]d z = (A3)
h
0 if j=a
h—d if j=a=1
h—d
274 i j=axl
> J
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0
(z7)= I cos[K ,(z +h)]dz =
—d
1. . . (Ad)
F[sijh —sinK (h—d)]
J
Appendix (B)
The complete solution of ¢, is
¢1[w = d)jllw + flw (Bl)

where ¢’ and ¢? ~are the homogencous and
particular parts of the ¢, respectively.

¢y, satisfies the Laplace equation

azd)l[w + az¢I[w - 0

B2
o’ oz’ ®2)
with the following boundary conditions
ad) W a w
Bl =y, Bl =g (83)
0z |-, oz |-,

In order to solve the eq. (B2) the following relation is
assumed

G, (%5,2) =W g, (3, 2) + f(X)

g(x)h(z)

The homogeneous parts of ¢7 and '’ are the

(z+h)?
2(h—d)

(B4)

same

(I)flw = Wj’[w (BS)
and the particular part of the ¢, is as follows

o =+ 10 i (B6)
1w 1w 2(h —d)
Now considering the boundary condition as
Wiy =0, one obtains
aZ z=—h
h(z)=cte=a
- (z+h)’
R VEAE — B7
e = Wi T (X) 2h—d) ag(x) (B7)

Substituting eq. (B7) into the eq.(B2), one obtains

az(l)llw +62¢[Iw = 62\V[Iw + 62\V[Iw +
o’ oz’ ox’ oz’

+h)} , f() ®9
”n z x " —
PO ey =0

or

e ()
W=y (B9)
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Because of rigid body rotation around point (0, z,),
f(x) should be considered as a linear function

S ()= fox

then

" —_ f;)x —_ fO ﬁ
&= oy MM a3
po_ b —(z+h)’x+x’/3

Oln =V T 1o 2h—d) (B10)

and

y X
W][Iw = f[(AI[wPI Z + Ay jCOS Ky (z+h)+

aZWHw + az\vllw — 0

BI11
ox? oz’ (BID
with the following boundary conditions
a\V 1w =0 (B 1 2)
0z |.-,
Nl —p (B13)
0z |-,

The homogeneous part of solution of the eq. (B11) is
as follows

(B14)

> 1) Ay XDy (x +5) + Ay, exp(K  (x —b))c0s K, (2 + h) [exp(—iaor)
j=2
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