
INTRODUCTION
FTA is a logical and diagrammatic method to evaluate 
the probability of Top Event (TE) that results from 
sequences of faults and failure events. The fault tree is 
useful for understanding the mode of occurrence of an 
accident in a logical way. Furthermore, given the failure 
probabilities of the BEs (i.e. system components), the 
occurrence probability of the TE can be calculated. 
However, conventional probabilistic methods cannot be 
directly adopted in this study because the input data is 
not only represented in terms of probabilistic numbers 
but also fuzzy numbers. Therefore, Fuzzy FTA (FFTA) 
is investigated in this paper. Fuzzy numbers are used to 
represent the likelihood of occurrence of BEs which are 
at the bottom level of the fault tree. FFTA is performed 
to generate the quantitative results used to represent the 
likelihood of occurrence of the TE.
Besides the likelihood of the TE, another useful result 
of FTA is importance measures for BEs that identifies 

contribution of the BEs to the occurrence of the TE. 
The importance measures are used for ranking the 
importance of different BEs. In this paper, Section 
2 introduces basic concepts of FFTA and reviews 
the methods used with FFTA. Section 3 describes 
the proposed methodology for this chapter.  Section 
4 presents a case study. Lastly, Section 5 gives the 
conclusion.

MATERIALS AND METHODS
1. Basics of FFTA
FTA is a powerful and computationally efficient 
technique for analysing and predicting system reliability 
and safety. Many theoretical advances and practical 
applications have been achieved in this field to date. 
FTA is based on Boolean algebra and probability 
theory and is consistent with conventional reliability 
theory. It assumes that exact probabilities of events are 
given and sufficient failure data is available. However, 
many modern systems are highly reliable and thus, it is 
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often very difficult to obtain sufficient statistical data 
to estimate precise failure rates or failure probabilities. 
Moreover, the inaccuracy associated with system 
models due to human errors is difficult to deal with 
solely by means of the conventional probabilistic 
reliability theory. These fundamental problems with 
probabilistic reliability theory have led researchers to 
look for new models or new reliability theories which 
can complement the classical probabilistic definition 
of reliability. Fuzzy set theory can be used to deal with 
this issue. Therefore, FFTA algorithm is developed to 
deal with such issues.

1.1 Traditional FTA
Traditionally, it is always assumed that the BEs 
contained in a fault tree are independent and could 
be represented as probabilistic numbers. With this 
assumption, quantitative analyses of fault trees are 
usually performed by considering two cases: (1) fault 
trees without repeated event, and (2) fault trees with 
repeated events (Andrews and Moss, 2002; Henley 
and Kumamoto, 1981).

(i) Fault trees without repeated events
If the fault tree for a TE contains independent BEs 
which appear only once in the tree structure, the 
TE probability can be obtained by working the 
BE probabilities up through the tree. In doing this, 
intermediate gate event (“and” or “or”) probabilities 

are calculated by starting at the base of the tree and 
working upwards until the TE probability is obtained. 
Fig. 1. demonstrates “and” and “or” intermediate gate 
events.  
For an “and” gate event, its probability is obtained by 
Equation 1.      
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where  is the probability of the TE; denotes the 
occurrence probability of BE; and  is the number of 
BEs associated with the “or” gate. For an “or” gate 
event, its probability is determined by Equation 2. 
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where Ρ is the probability of TE; pi denotes the 
occurrence probability of BEi ; and n is the number of 
BEs associated with the “or” gate.

(ii) Fault trees with repeated events
When fault trees have BEs which appear more than 
once, the methods most often used to obtain the TE 
probability utilise the Minimal Cut Sets (MCSs). A 
MCS is a collection of BEs. If all these events occur, the 
TE is guaranteed to occur; however, if any BE does not 
occur, the TE will not occur. Therefore, if a fault tree has 
nc  MCSs (MCi, i = 1,..., nc) then the TE “T” exists if at 
least one MCS exists (Andrews and Moss, 2002), i..  

TE

np1p ...

(a) an “or” event

TE

np1p ...

(b) an “and” event

Fig. 1: Symbol representation of “and” and “or” gates in fault trees
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An exact evaluation of the TE occurrence likelihood 
can be obtained by Equation 4.

)...()1(

)...)...(...)()(()(...)()(
)...()(

21
1

312121

21

N
N

jiN

N

MCSMCSMCSP

MCSMCSPMCSMCSPMCSMCSPMCSPMCSPMCSP
MCSMCSMCSPTP

III

III

UUU

−−+

++−++=
=

)...()1(

)...)...(...)()(()(...)()(
)...()(

21
1

312121

21

N
N

jiN

N

MCSMCSMCSP

MCSMCSPMCSMCSPMCSMCSPMCSPMCSPMCSP
MCSMCSMCSPTP

III

III

UUU

−−+

++−++=
=

)...()1(

)...)...(...)()(()(...)()(
)...()(

21
1

312121

21

N
N

jiN

N

MCSMCSMCSP

MCSMCSPMCSMCSPMCSMCSPMCSPMCSPMCSP
MCSMCSMCSPTP

III

III

UUU

−−+

++−++=
=

where P(MCSi) is the occurrence probability of MCS i  
and N is the number of MCS. 

1.2 FFTA
In conventional FTA, the failure probabilities of system 
components are treated as exact values. However, for 
many systems, it is often very difficult to estimate 
the precise failure rates or probabilities of individual 
components or failure events in the quantitative 
analysis of fault trees from past occurrences. In other 
words the crisp approach has difficulty in conveying 
imprecision or vagueness nature in system modelling 
to represent the failure rate of a system component 
(Liang and Wang, 1993).  This always happens under 
a dynamically changing environment or in systems 
where available data is incomplete or insufficient for 
statistical inferences. Therefore, in the absence of exact 
data, it may be necessary to work with approximate 
estimations of probabilities. Under these conditions, it 
may be inappropriate to use the conventional FTA for 
computing the system failure probability. Therefore, it 
is necessary to develop a novel formalism to capture 
the subjectivity and the imprecision of failure data for 
use in the FTA. Instead of the probability of a failure, 
it may be more appropriate to propose its possibility 
(Misra and Weber, 1990). The probability values of 
components will be characterized by fuzzy numbers.
With respect to this inadequacy of the conventional 
FTA, extensive research has been performed using 
fuzzy set theory in FTA. This pioneering research on this 
was conducted by Tanaka et al., (1983), which treated 
probabilities of BEs as trapezoidal fuzzy numbers, and 
applied the fuzzy extension principle to determine the 
probability of TE. Based on this work, further extensive 
researches were performed (Misra and Weber, 1990; 
Liang and Wang, 1993). Another variation of FFTA 
was given by Misra and Weber (1989). Their analysis 
was based on possibility distribution associated with 

the BEs and a fuzzy algebra for combining these 
events. Parallel with this, Singer (1990) analysed fuzzy 
reliability by using L-R type fuzzy numbers. In order 
to facilitate the calculation of Singer’s method, Cheng 
and Mon (1993) proposed revised methods to analyse 
fault trees by specifically considering the failure FPs 
of BEs as triangular fuzzy numbers. In addition to the 
above studies, Onisawa (1988) proposed a method of 
using error possibility to analyse human reliability in a 
fault tree. By combining with Onisawa’s work, Lin and 
Wang (1997) developed a hybrid method which can 
simultaneously deal with probability and possibility 
measures in a FTA. Sawer and Rao (1994) applied 
α-cuts to determine the failure probability of the TE 
in fuzzy fault trees of mechanical systems. Cai et al. 
(1991) and Huang et al. (2004) adopted possibility 
theory to analyse fuzzy fault trees. Dong and Yu (2005) 
applied the hybrid method to analyse failure probability 
of oil and gas transmission pipeline. Shu et al. (2006) 
used intuitionistic fuzzy methods to analyse fault trees 
on a printed circuit board assembly. Ping et al. (2007) 
presented a method which overcomes the drawbacks 
of traditional FTA by using possibilistic measures 
and fuzzy logic. Pan and Wang (2007) used FFTA for 
assessing failures of bridge construction.
Extensive research has been carried out to determine 
the importance of BEs in FFTAs. Tanaka et al. 
(1983) defined an improvement index to evaluate the 
importance of each BE. Furuta and Shiraishi (1984) 
used representative values of fuzzy membership 
functions to calculate the importance. Liang and Wang 
(1993) used ranking values to evaluate fuzzy importance 
index. Suresh et al. (1996) applied Euclidean distance 
to determine fuzzy importance measures and fuzzy 
uncertainty importance measures, which was further 
improved by Guimarees and Ebecken (1999). It is 
obviousfrom the above reviews that FFTA has been 
extensively studied for a long time and effectively 
applied to many engineering problems. However, its 
application in offshore oil and gas pipelines is still 
scarce and rarely reported. This research specifically 
investigates the application of FFTA in offshore oil and 
gas pipeline systems.

2 Proposed model: FFTA of offshore pipeline
In circumstances where a lack or incompleteness of data 
exists, there is a need to incorporate expert judgements 
into risk research. A framework is proposed based on 
the fuzzy set theory with the FTA method is capable of 
quantifying the judgement from experts who express 
opinions qualitatively. The proposed framework is 
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1.Spearating hazards with known failure rate from vague hazards

3. Rating stage: collecting expert opinions for vague
hazards and converting their opinions into the 

corresponding  fuzzy numbers

8. Ranking of MCs

2. Obtaining probability failure of known 
hazards from their corresponding failure 

rates

7.  Calculating all MCs and corresponding FP of TE 

4.1 Calculating the degree of similarity of  pair of 
experts judgements for each BE

4.2 Calculating the degree of agreement of each pair of 
experts

4.3 Calculating the relative degree of agreement of 
each pair of experts

4.4 Calculating the consensus degree of coefficient for 
each pair of experts

4.5 Calculating the aggregation result base on the 
expert opinion

5. Defuzzyfing process

4. Aggregating 
stage

6. Transforming Crisp Failure Possibility (CFP) of BEs
into FP 

Fig. 2 Structure of the proposed methodology

developed in eight different stages in Fig. 2. In the first 
stage, the BEs with known failure rates are separated 
from those BEs with vague failure rates. The second 
stage is to obtain the failure probabilities of BEs 
with known failure rates. In the third stage, expert 
judgements are assigned to the BEs with vague failure 
rates. These ratings are generally in a fuzzy number 
form. The fourth stage is an aggregation procedure. It 
is performed by aggregating experts’ opinions for BEs 

with vague failures through linguistic terms.
A defuzzification process will then be adopted to 
transform the experts’ judgements (fuzzy possibility) 
to the corresponding crisp possibility values by 
employing an appropriate algorithm. The sixth stage is 
to convert such crisp possibilities values to the failure 
probabilities. This is followed by estimating the MCSs 
and TE.  In the last stage ranking of all the MCSs can 
consequently be produced. Fig. 2  presents the structure 

Application of Fuzzy Fault Tree Analysis
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of the proposed methodology.

2.1 Separating hazards 
As mentioned earlier, the first step of the methodology 
is a separation of hazards with known failure rate 
from vague hazards. Failure rates of some hazards are 
available from Offshore RElaibility DAta (OREDA) 
hand book. By using OREDA, it is possible to separate 
hazards with known failure rate from vague hazards 
associated with offshore pipeline. 

2.2 Obtaining failure probability of hazards with known 
failure rate
The foundation of a good analysis is the pedigree of 
failure rate or event probability data that is assigned 
to BEs. A good faith effort must be made to obtain the 
best failure rate data that is available. The uncertainty in 
failure rate data depends in large part on the applicability 
of the data (its source). A failure rate should apply to 
the particular application of a component, its operating 
environment, and its non-operating environment. The 
failure rate data hierarchy is given as follows:
1. Actual mission data on the component.
2. Actual mission data on a component of similar 
design.
3. Life test or accelerated test data on the component.
4. Life test or accelerated test data on a similar 
component.
5. Field or test data from the component supplier.
6. Specialized data base or in-house data base on 
similar components.
7. Standard handbooks for reliability data such as 
OREDA.
There are predominantly three methods that could be 
used to determine the occurrence probability of an 
event namely (Preyssl, 1995):
1. Statistical method.
2. Extrapolation method.
3. Expert judgement method.
The statistical method uses the treatment of direct test 
of experience data and the calculation of probabilities. 
The extrapolation method involves the use of model 
prediction and similar condition or using standard 
reliability handbook. The expert judgement method 
uses direct estimation of probabilities by specialists.
A component is tested periodically with test interval τ. A 
failure may occur at any time in the test interval, but the 
failure is only detected in a test. After a test/repair, the 
component is assumed to be “as good as new”. This is 
a typical situation for many safety-critical components, 
like sensors and safety valves. If an event failure is of 
a kind which can be inspected, the component failure 

probability can be obtained from Equation 5 (Spouge, 
2000; Rausand and Hoyland, 2004).                          

( ) λτ
2
1

=tP λτ                                                                (5)  

where is the component failure rate and  is the inspection 
interval.
If a component is of a kind which cannot be inspected. 
The component failure probability P, which is also called 
the unreliability, is determined from Equation 6 ;                                                                                                   

(6)P(t) = 1 - e -λt

where   is the component failure rate and   is the relevant 
time interval. Based on the Maclaren Series, the above 
equation for P can be obtained from Equation 7 if   
λt < 1                                                              
                                                                                   (7)
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2.3 Rating stage
During this stage, experts express their opinions for 
each BE with respect to each subjective attribute. 
Expert elicitation is the synthesis of experts’ opinions of 
a subject where there is uncertainty due to insufficient 
data because of physical constraints or lack of resources 
(Rausand and Hoyland, 2004). Expert elicitation is 
essentially a scientific consensus methodology and is 
often used in the study of rare events. Expert elicitation 
allows for parameterization, an "educated guess", for 
the respective topic under study. Expert elicitation 
generally quantifies uncertainty. 
The technique has been studied within many disciplines. 
Examples of fields that have contributed to probability 
elicitation are decision analysis, psychology, risk 
analysis, Bayesian statistics, mathematics and 
philosophy.
Quantification of subjective probabilities is employed 
in a number of circumstances (Korta et al., 1996; SKB, 
1999):
• Evidence is incomplete because it cannot be 
reasonably obtained.
• Data exists only from analogous situations (one might 
know the solubility of one mineral and might use this 
information to infer the solubility of another mineral).
• There are conflicting models or data sources.
• Scaling up from experiments to target physical 
processes is not direct (scaling of mean values is often 
much simpler than rescaling uncertainties).
Expert knowledge is influenced by individual 
perspectives and goals (Ford and Sterman, 1998). 
Therefore, complete impartiality of expert knowledge is 
often difficult to achieve. An important consideration in 
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the selection of experts is whether to use a heterogeneous 
group of experts (e.g. both scientists and workers) or a 
homogenous group of experts (e.g. only scientists). The 
effect of difference in personal experience on expert 
judgement is assumed to be smaller in homogenous 
group compared to a heterogeneous group. A 
heterogeneous group of experts can have an advantage 
over a homogenous group through considering all 
possible opinions. In summary, criteria to identify 
experts are based on (1) a person’s period of learning 
and experience in a specific domain of knowledge, 
thus influencing his or her judgmental and analytical 
behaviour, and (2) the specific circumstances in which 

Constitution Classification Score

Professional Position (PP) Senior academic
Junior academic

Engineer
Technician

Worker

5
4
3
2
1

Service Time (ST) '

 

 30 years
20 - 29
10 - 19
6 - 9

'

 

 5

5
4
3
2
1

Education Level (EL) PhD
Master

Bachelor
HND

School level

5
4
3
2
1

Table 1: Weighting scores of different experts

experience is gained, e.g. in theoretical or practical 
circumstances.
In this study, a heterogeneous group of experts is 
selected for evaluating the probability of vague events. 
The weighting factors of experts are determined 
according to Table 1.
Rating of expert judgement can be carried out in 
linguistic terms, which are used for soliciting expert 
opinions for each basic event. The concept of linguistic 
term is very useful in dealing with situations, which 
are too ill defined or too complex to be described in 
conventional quantitative expression (Zadeh, 1965).

2.4 Aggregating stage
Since each expert may have a different opinion 
according to his/her experience and expertise in the 
relevant field, it is necessary to aggregate experts’ 
opinions to reach a consensus. 
Hsu and Chen (1994) presented an algorithm to 
aggregate the linguistic opinions of a homogeneous/

heterogeneous group of experts. Suppose each expert, 
Ek(k = 1, 2, ..., M) expresses his/her opinion on a 
particular attribute against a specific context by a 
predefined set of linguistic variables. The linguistic 
terms can be converted into corresponding fuzzy 
numbers. The detailed algorithm is described as 
follows:
1. Calculate the degree of agreement (degree of 
similarity) Suv(( )vuuv RRS ~,~

u , ( )vuuv RRS ~,~
v ) of the opinions ( )vuuv RRS ~,~

u and ( )vuuv RRS ~,~
v of a pair 

of experts Eu and Ev , where Suv(( )vuuv RRS ~,~
u , ( )vuuv RRS ~,~

v )( ) [ ]1,0~,~ ∈vuuv RRS [0,1]. According 
to this approach, Ã=(a1, a2, a3, a4 ) and ( )4321 ,,,~ bbbbB = =(a1, a2, a3, a4)
are two standard trapezoidal fuzzy numbers. Then the 
degree of similarity between these two fuzzy numbers 

can be obtained by the similarity function of , which is 
defined as: 
  S(Ã , ( )4321 ,,,~ bbbbB =) ( ) ∑

=

−−=
4

14
11~,~

i
ii baBAS                                       (8)

where S(Ã, ( )4321 ,,,~ bbbbB =)( ) [ ]1,0~,~ ∈vuuv RRS  [0,1]. The larger value of S(Ã, ( )4321 ,,,~ bbbbB =),the 
greater similarity between two fuzzy numbers  of  Ã 
and ( )4321 ,,,~ bbbbB =. 
2. Calculate the Average Agreement (AA) degree  AA(Eu) 
of the experts.                                                            

(9)
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1

 
3. Calculate the Relative Agreement (RA) degree, 
RA(Eu) of the experts. 

Eu(u=1,2,...,M) as RA(Eu)= ( ) ( )

( )∑
=

= M

u
u

u
u

EAA

EAA
ERA

1

                  (10)                                                                                                      

4. Estimate the Consensus Coefficient (CC) degree,  
CC(Eu) of expert, Eu(u=1,2,...,M): 

M.R. Miri Lavasani et al.      
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CC(Eu)= β.w(Eu) + (1-β) . RA(Eu)                           (11)

where β  ( )10 ≤≤ β is a relaxation factor of the 
proposed method. It shows the importance w(Eu) over 
RA(Eu). When β = 0 no importance has been given to 
the weight of an expert and hence a homogeneous group 
of experts is used. When β = 1, the consensus degree 
of an expert is the same as its importance weight. The 
consensus degree coefficient of each expert is a good 
measure for evaluating the relative worthiness of each 
expert's opinion. It is the responsibility of the decision 
maker to assign an appropriate value to β.

5. Finally, the aggregated result of the experts’ 
judgments, AGR~AG, can be obtained as follows: 

AGR~AG= ( ) ( ) ( ) MMAG RECCRECCRECCR ~~~~
2211 ×++×+×= L            

                                                                                 (12)     

2.5 Defuzzification process
Defuzzification is the process of producing a quantifiable 
result in fuzzy logic. Defuzzification problems 
emerge from the application of fuzzy control to the 
industrial processes (Zhao and Govind, 1991). Fuzzy 
numbers defuzzification is an important procedure for 
decision making in fuzzy environment. The centre of 
area defuzzification technique is selected here. This 
technique was developed by Sugeno in 1985 (Sugeno, 
1999). This is the most commonly used technique and 
is accurate. This method can be expressed as: 

∫
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where  is the defuzzified output,   is the aggregated 
membership function and   is the output variable. The 
above formula can be shown as follows for triangular 
and trapezoidal fuzzy numbers. Defuzzification of 
fuzzy number   is:
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Defuzzification of trapezoidal fuzzy number Ã = (α1, 
α2, α3) can be obtained by Equation 15.
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2.6 Transforming Crisp Failure Possibility (CFP) of 
BEs into failure probability
As aforementioned, there are data available for failure 
rates of some events whilst the data associated with the 
others are vague. There is inconsistency between failure 
probabilities of certain hazards and CFPs of vague 
events. This issue can be solved by transforming CFPs 
of vague events into the form of failure probabilities. 
This transformation can be performed by using Equation 
16. Onsiawa (1998) has proposed a function which 
can be used for converting CFP to failure probability. 
This function is derived by addressing some properties 
such as the proportionality of human sensation to 
the logarithmic value of a physical quantity. The 
probability rate can be obtained from possibility rate 
as follows (Onsiawa, 1998; Onsiawa and Nishiwaki, 
1998; Onsiawa, 1988; Onsiawa, 1990; Onsiawa, 1996; 
Lin and Wang, 1998): $%
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2.7 Calculating all MCSs and occurrence of TE 
By definition, an MCS is a combination (intersection) of 
BEs leading to the TE. The combination is a “minimal” 
combination in that all the failures are needed for the 
TE to occur; if one of the failures in the MCS does not 
occur, then the TE will not occur (by this combination). 
Any fault tree will consist of a finite number of MCs 
that are unique for that TE. One-component MCSs, 
if there are any, represent those single failures that 
will cause the TE to occur. Two-component MCSs 
represent the double failures that together will cause 
the TE to occur. TE can be obtained from MCSs by 
using Equation 4.

2.8 Ranking of MCs 
One of the most important outputs of an FTA is the set 
of importance measures that are calculated for the TE. 

dχ dχ

dχ dχdχ
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Such importance measures establish the significance 
for all the MCSs in the fault tree in terms of their 
contributions to the TE probability. Both intermediate 
events (gate events) as well as MCSs can be prioritized 
according to their importance. Importance measures 
can also be calculated that give the sensitivity of the TE 
probability to an increase or decrease in the probability 
of any event in the fault tree. Two types of TE 
importance measure can be calculated for the different 
types of applications. The importance measures that 
can be calculated for each MC in the fault tree are 
described as follows:
Fussell-Vesely Importance Measure (F-VIM) is the 
contribution of the MCSs to the TE probability. F-VI 
measures are determinable for every MCSs modelled 
in the fault tree. This provides a numerical significance 
of all the fault tree elements and allows them to be 
prioritized. The F-VI is calculated by summing all the 
causes (MCSs) of the TE involving the particular event. 
This measure has been applied to MCSs to determine 
the importance of individual MCS. Where Qi(t) is 
the contribution of MCS  to failure of the system, 
the importance measure can be quantified as follows 
(Modarres, 2006):
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FV ( )
( )tQ
tQ

tI
S

iFV
i =)(                                                           (17)

Qi(t) = Probability of failure of MCS i  

Qs(t) = Probability of failure of TE due to all MCSs
Risk Reduction Worth (RRW) measures the decrease in 
the probability of the TE if a given MCS is assured not 
to occur. This importance measure can also be called the 

Top Decrease Sensitivity (TDS). RRW for a MCS shows 
the decrease in the probability of the TE that would be 
obtained if the MCS did not occur. Therefore, the RRW 
can be calculated by re-quantifying the fault tree with 
the probability of the given MCS to 0. It thus measures 
the maximum reduction in the TE probability. An RRW 
value is determinable for every MCSs in the fault tree. 

3 Case study
The offshore pipeline fault tree is selected as the case 
study. 

3.1 Separating hazards with known failure rate from 
hazards with unknown failure rate
The elements of the fault tree logic diagram are divided 
into hazards with known occurrence probabilities and 
hazards with unknown occurrence probabilities. 17 
hazards are identified for pipeline gas leakage. 10 of 
them are hazards with known occurrence probabilities 
whilst there are not historical data available for the 
other 7 hazards. The probabilities 7 of such hazards 
can be obtained by applying subjective linguistic 
evaluation. Table 2 presents all the hazards associated 
with the constructed fault tree.

3.2 Calculating FPs of hazards with known failure rate
As previously mentioned, the foundation of a good 
analysis is the pedigree of failure rate or event 
occurrence probability data that is assigned to BEs. 
Therefore, occurrence probabilities of hazards 
with known failure rate can be estimated by using 
Equations 5 to 7. For example, the failure rate of 
internal corrosion is 

yearkmcorrosion .
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Gas pipeline  hazard Fault tree Ref. Hazard failure rate Gas pipeline hazard Fault tree Ref. Hazard failure rate

1.Bad installation H111 Linguistic term 10.Maintenace H141 Linguistic term

2.Bad weld H112 Failure rate 11.Human error H142 Linguistic term

3.Unsutiable material H121 Failure rate 12.Earth quake H21 Failure rate

4.Inadequate strength H122 Failure rate 13.Turbidty current H22 Failure rate

5.Acid H1311 Failure rate 14.Mud flow H23 Linguistic term

6.High water ratio H1312 Failure rate 15.Dropped object H311 Linguistic term

7.Tensile stress H1313 Failure rate 16.Trawling H312 Linguistic term

8.Internal corrosion H132 Failure rate 17. Terrorist activity H32 Linguistic term

9.External corrosion H133 Failure rate

Table 2: Offshore pipeline hazard probabilities

Application of Fuzzy Fault Tree Analysis

(t)
(t)
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Fig. 3: Chen and Hwang conversion scale 7

Table 3: Failure probabilities of Bes

BEs FP of BEs of known failure rate BEs FP of BEs of known failure rate

H112 0.0004 H1313 0.001

H121 0.003 H132 0.00066

H122 0.0006 H133 0.00035

H1311 0.005 H21 0.005

H1312 0.002 H22 0.001

terms). The typical estimate of human working memory 
capacity is seven plus-minus two chunks, which means 
that the suitable number for linguistic term selection 
for human beings to make an appropriate judgement is 
between 5 and 9 (Miller, 1956; Norris, 1998). Therefore, 
conversion scale of 6 which contains 5 verbal terms is 
selected for performing the subjective assessment of 
hazards with unknown failure rate. Fig. 3 introduces 
the fuzzy linguistic scale that is used in this chapter to 
determine the judgements of experts with respect to 
hazards with unknown failure rate. 
The linguistic terms of Fig. 3 are in the form of both 
triangular and trapezoidal fuzzy numbers. All of the 
triangular fuzzy numbers can be converted into the 
corresponding trapezoidal fuzzy numbers for the ease of 

in a year. Therefore, FP of internal corrosion can be 
obtained by using Equation 5 as follows:

FP Internal corrosion = yearkmcorrosion .
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The failure probabilities

12

of the BEs with known failure 
rate are calculated and presented in Table 3.

3.3 Rating stage
In the proposed method, a numerical approximation 
system proposed by Chen and Hwang (1992) is used 
to convert linguistic terms to their corresponding fuzzy 
numbers. There are generic verbal terms in the system 
where scale 1 contains two verbal terms (linguistic 
terms) and scale 8 contains 13 verbal terms (linguistic 

Table 4: Fuzzy number of conversion scale 6

Linguistic terms Fuzzy sets

Very Low (VL) (0,0,0.1,0.2)

Low (0.1,0.25,0.25,0.4)

Medium (0.3,0.5,0.5,0.7)

High (0.6,0.75,0.75,0.9)

Very High (VH) (0.8,0.9,1,1)
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Table 5: Experts weight

No of expert Title Service time (Year) Education level Weighting factor Weighting score

1 Senior academic 10-19 PhD 5+3+5=13 0.38

2 Engineer 20-29 Master 3+4+4=11 0.32

3 Engineer 20-29 Bachelor 4+3+3=10 0.30

Total: 34 Total: 1

Expert 1 (E1)
Expert 2 (E2)
Expert 3 (E3)

0.3
0.3
0.1

0.5
0.5
0.25

0.5
0.5
0.25

0.7
0.7
0.4

S (E1&2)
S (E1&3)
S (E2&3)

1
1

0.75

AA (E1)
AA (E2)
AA (E3)

0.875
0.875
0.75

RA (E1)
RA (E2)
RA (E3)

0.35
0.35
0.3

CC (E1)
CC (E2)
CC (E3)

0.365
0.35
0.3

Weight of expert 1 (E 1) 0.38

Weight of expert 2 (E 2) 0.32

Weight of expert 3 (E 3) 0.3

Aggregation for H111 0.24 0.425 0.425 0.61

Table 7: Aggregation calculations for the BE of “H111”

BEs
Expert judgment on vague BEs

E1 E2 E3

H111 M M L

H141 L L VL

H142 M M L

H23 M H H

H311 H H H

H312 VL L L

H32 L M VL

Table 6: Expert judgments on vague Bes

analysis.  Table 4 presents all the fuzzy numbers of Fig. 
3 in the form of trapezoidal fuzzy numbers. 
As previously mentioned, a heterogeneous group of 
experts is employed to perform the judgement for 
the vague events. The weights of the experts are not 
equal. The experts’ weights can be obtained by using 
Table 1. Three experts are employed for performing the 
judgements. Table 5 shows the experts’ weights. This 
table is particularly designed for this research project.
Expert judgements on the BEs with unknown failure 
rate are illustrated in Table 6.

3.4 Aggregation for obtaining estimates of BEs  
In this stage, all the ratings are aggregated under each 
subjective BE. As an example, the detailed aggregation 
calculations for BE of “H111” are given in Table 7.   is 
considered as 0.5 in the aggregation calculation of the 
subjective BEs. 
These calculations contain attribute based aggregation 
calculations, such as Average degree of Agreement 
(AA), Relative degree of Agreement of each expert 
(RA), etc. After the aggregation calculations, the results 
of all the BEs are presented in Table 8.

M.R. Miri Lavasani et al.      
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Table 9: Defuzzification results for all subjective Bes

BEs Aggregation of subjective basic events Defuzzification of subjective BEs (CFP)

H111 (0.24,0.425,0.425,0.61) 0.425

H141 (0.07,0.17,0.2,0.34) 0.197

H142 (0.24,0.425,0.425,0.61) 0.425

H23 (0.5,0.665,0.665,0.832) 0.665

H311 (0.6,0.75,0.75,0.9) 0.75

H312 (0.06,0.163,0.198,0.33) 0.189

H32 (0.13,0.25,0.28,0.43) 0.274

Table 8: Aggregation calculations for each subjective BE

BEs Aggregation of  each subjective BE

H111 (0.24,0.425,0.425,0.61)

H141 (0.07,0.17,0.2,0.34)

H142 (0.24,0.425,0.425,0.61)

H23 (0.5,0.665,0.665,0.832)

H311 (0.6,0.75,0.75,0.9)

H312 (0.06,0.163,0.198,0.33)

H32 (0.13,0.25,0.28,0.43)

3.5 Defuzzification process of subjective BEs
The centre of area defuzzification technique is 
employed to calculate the defuzzification of all the 
subjective BEs. Table 9 shows the result of subjective 
BEs defuzzification. 

3.6 Converting CFPs of BEs into failure probability
The CFPs of the subjective BEs can be transformed 
into the corresponding failure probabilities by using 
Equation 16. Table 10 presents the failure probabilities 
of all the subjective BEs. 

3.7 Calculating failure probability of TE
To quantify the occurrence probability of the TE of 
the fault tree, the occurrence probability for each 
BE in the fault tree must be provided. These BE 
probabilities are then propagated upward to the TE 
using the Boolean relationships. The BE probabilities 
can be propagated upward using MCSs. Table 11 
presents the FPs of all the MCSs. Furthermore, the 
occurrence probability of TE is obtained by using 
Equation 4. The occurrence probability of the TE is 
0.0538 

56,789
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Table 10: Converting CFP into failure probability

BEs FP of subjective BEs

H111 0.002

H141 0.0002

H142 0.002

H23 0.014

H311 0.025

H312 0.0001

H32 0.0006
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Table 12: Importance level of each MCS

No of MCs Occurrence probability of MCs F-VIM Ranking of MCs

MCs1 0.002 0.036 5

MCs2 0.0004 0.007 11

MCs3 0.003 0.054 4

MCs4 0.0006 0.010 9

MCs5 0.00000001 1.8E-07 15

MCs6 0.00066 0.027 7

MCs7 0.00035 0.006 12

MCs8 0.0002 0.003 13

MCs9 0.002 0.036 5

MCs10 0.005 0.091 3

MCs11 0.001 0.018 8

MCs12 0.014 0.256 2

MCs13 0.025 0.457 1

MCs14 0.0001 0.001 14

MCs15 0.0006 0.010 9

Table 13: Result of sensitivity analysis

TE=0.0538

No of MCSs Occurrence probability of MCSs F-VI M MCSs rank New TE RRW=TE-New TE RRW rank

MCSs1 0.002 0.036 5 0.0519 0.0019 5

MCSs2 0.0004 0.007 11 0.0534 0.0004 11

MCSs3 0.003 0.054 4 0.0509 0.0029 4

MCSs4 0.0006 0.010 9 0.0532 0.0006 9

MCSs5 0.00000001 1.8E-07 15 0.0537 0.00001 15

MCSs6 0.00066 0.027 7 0.0530 0.0008 7

MCSs7 0.00035 0.006 12 0.0535 0.0003 12

MCSs8 0.0002 0.003 13 0.0536 0.0002 13

MCSs9 0.002 0.036 5 0.0519 0.0019 5

MCSs10 0.005 0.091 3 0.0490 0.0048 3

MCSs11 0.001 0.018 8 0.0531 0.0007 8

MCSs12 0.014 0.256 2 0.0404 0.0134 2

MCSs13 0.025 0.457 1 0.0290 0.0248 1

MCSs14 0.0001 0.001 14 0.0537 0.0001 14

MCSs15 0.0006 0.010 9 0.0532 0.0006 9

Table 11: Failure probability of all MCSs

MCSs Occurrence probability MCSs Occurrence probability MCSs Occurrence probability

1. H111 0.002 6. H132 0.00066 11. H22 0.001

2. H112 0.0004 7. H133 0.00035 12. H23 0.014

3. H121 0.003 8. H141 0.0002 13. H311 0.025

4. H122 0.0006 9. H142 0.002 14. H312 0.0001

5. ( H1311 H1312 H1313) 0.00000001 10. H21 0.005 15. H32 0.0006
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3.8 Ranking of Minimal Cut Sets (MCSs)
An important objective of many reliability and risk 
analyses is to identify those components or MCSs 
that are the most important (critical) from a reliability 
or risk viewpoint so that they can be given priority 
with respect to improvements. Table 12 presents the 
ranking of MCSs based on their calculated importance 
levels.
In a sensitivity analysis, an input data parameter, 
such as a component failure probability is changed, 
and the resulting change in the TE probability is 
determined. This is repeated for a set of changes 
using either different values for the same parameter 
or changing different parameters, e.g., changing 
different failure probabilities. Usually for a given 
sensitivity evaluation, only one parameter is changed 
at a time. This is called a one-at-a-time sensitivity 
study. This method is employed here to validate the 
sensitivity of the proposed model. RRW is employed 
to perform sensitivity analysis. The RRW can be 
calculated by setting a MCS probability to 0. It is 
expected that elimination of the MCS that has the 
highest contribution to the occurrence of TE should 
result in reducing the occurrence rate of TE more than 
other MCSs. Therefore, ranking of RRW values is 
expected to be the same as the ranking result of MCSs 
in Table 12. As shown in Table 13, MCS13 has the 
highest contribution to the TE occurrence probability. 
Therefore, the RRW value of MCS13 must be the 
largest. As demonstrated in Table 13, the RRW value 
of MCS13 is 0.0248 which is the highest as expected. 
Table 13 shows the ranking result which remains 
the same as the one in Table 12 The proposed model 
satisfies the aforementioned expectations.  

RESULTS AND DISCUSSION 
With respect to inadequacy of the conventional FTA, 
extensive research has been performed using fuzzy 
set theory in FTA. This paper introduces a new 
methodology which combines fuzzy set theory and 
FTA for overcoming inadequacy of traditional FTA. 
The proposed method helps the system analyst to 
quantify the probability of top event more accurately 
by reducing the level of uncertainty. Fuzzy set theory 
is employed as a method for treating uncertainty in 
this paper. This method helps analysts to quantify the 
rate of TE in the absence of exact data. Top event of 
the proposed fault tree is quantified by using FFTA.  
Quantified leakage rate is  0.0538 
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of appropriate data bank such a TE rate is questionable 
but by using the proposed method it is possible to cover 
the associated uncertainty with databank.  

CONCLUSION 
In this chapter a structured framework has been 
developed that may help the analyst to identify the 
critical MCSs in the system. From the result of this 
study, the following conclusions are drawn: 
• A fuzzy methodology for fault tree evaluation seems 
to be a viable alternative solution to overcome the 
weak points of the conventional approach: insufficient 
information concerning the occurrences frequencies 
of hazardous events.
• By using linguistic variables, it is possible to handle 
the ambiguities involved in the expression of the 
occurrence of a hazard (BE). In addition, the state of 
each hazard can be described in a more flexible form 
using the concept of fuzzy set.
• Instead of using the CFP, failure probability is used 
to characterize the failure occurrence of the system 
events. It can efficiently express the vagueness nature 
of system phenomena and insufficient information. 
• The importance measure can provide useful 
information for improving the safety performance 
of a system. F-VI measure index assists the analyst 
in identifying the critical MCSs in the system for 
reducing occurrence likelihood of a TE.  
However there is another point that needs to be 
considered for further studies:
• The basic events are considered as independent 
in this study. In the future research, it is required to 
develop a method for taking into account dependency 
between hazards.
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